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Abstract

We propose a new deterministic evolutionary dynamic—the tempered best response
dynamic (tBRD)—to capture two features of economic decision making: optimization
and continuous sensitivity to incentives. That is, in the tBRD, an agent is more likely
to revise his action when his current payoff is further from the optimal payoff, and he
always switches to an optimal action when revising. The tBRD is a payoff monotone
selection like the replicator dynamic, which makes medium and long-run outcomes
more consistent with predictions from equilibrium refinement than the BRD in some
situations. The technical contribution of the tBRD is continuous sensitivity, which
allows us to apply results of a system of piecewise differential equations in order to
obtain conditions for uniqueness and stability of solutions.
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costs, proper equilibrium, piecewise differential equations
JEL classification: C62, C73, D03

∗Department of Economics, Temple University, 1301 Cecil B. Moore Ave., RA 873 (004-04), Philadelphia,
PA 19122, U.S.A. Tel:+1-215-204-1762. E-mail: zusai@temple.edu.

1



1 Introduction

Among various evolutionary dynamics, the best response dynamic (BRD) is thought of as a
standard dynamic based on optimization (Gilboa and Matsui, 1991; Matsui, 1992; Hofbauer,
1995): whenever an agent gets an opportunity to revise his action, he chooses the action
that is currently optimal. An implicit assumption imposed on the BRD is that revision
opportunities come at some constant frequency. At each such opportunity, the revising
agent must switch to an optimal action, no matter how little the switch improves the agent’s
payoff. By the same token, large payoff improvements do not lead an agent to switch his
action more quickly.

In reality, the smaller the potential gains, the less likely people are to switch their actions.
People may not recognize small gains and may miss chances to take advantage of them; for
example, when a commuter drives from his home to his workplace, he may not switch from
his regular route for a small difference of a few minutes in drive time. These behaviors can
be explained by status-quo biases or switching costs. Experimental and empirical research
has reported the existence of status-quo bias in real economic choices: see Samuelson and
Zeckhauser (1988); Hartman, Doane, and Woo (1991); Madrian and Shea (2001).1 By
fitting reinforcement learning models with experimental data, Erev and Roth (1998) found
that persistence of previously taken actions increases the models’ prediction power.

This behavioral evidence motivates us to build a new evolutionary dynamic that combines
an optimization-based decision rule with payoff sensitivity in the decision to revise. We define
the tempered best response dynamic (tBRD) by making the frequency of an agent’s revision
opportunities depend on the payoff difference between the agent’s current action and his
optimal action, which we call the the payoff deficit of the current action. This dynamic can
be interpreted as the standard BRD with stochastic status-quo biases: a larger payoff deficit
implies a higher probability that the payoff improvement exceeds the status-quo bias and
hence a higher probability that the agent switches to the optimal action.

A status-quo bias seems natural for myopic optimizers. In a class of myopic optimization-
based dynamics, such as the standard BRD, myopic agents have the ‘stationary’ belief that
the current state continues into the future. Such agents take this belief as a convenience
because of their bounded ability to predict the future. For this reason, they might not let
their actions fluctuate with small changes of the current state until they become convinced
of those changes, i.e. they would postpone changing the action until the state goes so far
from the present one that they are convinced that the present action is undesirable. Thus,
a myopic player may want to introduce a buffer that inhibits changes of actions. This
role is served by a status-quo bias. In addition, a status-quo bias of a person can vary
with the surrounding situation. Stochastic status-quo bias would be a good, tractable way
to incorporate effects of the non-modeled surrounding environment on recurrent decision
making.

The payoff sensitivity of the tBRD makes its solution trajectories differ from those of
the standard BRD in significant ways. Under the BRD, since the switching rate from a
suboptimal action does not depend on the payoff, any suboptimal action loses its players
at the same constant rate. But under the tBRD, switching rates from suboptimal actions
depend on payoff deficits. A worse action has the number of its players decrease at a greater
rate than a better one. Hence, the tBRD is a payoff monotone selection like the replicator
dynamic. While it admits multiple solution paths like the BRD, its payoff monotonicity
eliminates pathological multiplicity and cycles.

The idea of payoff monotonicity appears in equilibrium refinement as well; a proper
equilibrium is the limit of perturbations that are consistent with payoff ordering. We present
situations where the limit of an interior convergence path under the tBRD is a proper
equilibrium. Compared with the standard BRD, where the limit is trembling-hand perfect,

1Recently decision theorists have incorporated status-quo biases into the axiomatic framework of choice
theory: see Masatlioglu and Ok (2005); Sagi (2006); Ortoleva (2010). In addition, the theory of industrial
organization notes the significance of consumers’ switching costs in market competition (Klemperer, 1995).
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the tBRD narrows down plausible outcomes in such situations. Recall that properness
implies sequential and subgame-perfect equilibrium in the corresponding extensive form
game. We show an example where the BRD allows convergence to an implausible outcome
but the tBRD does not.

At the same time, the tBRD preserves the convergence properties of the BRD. We verify
global stability of Nash equilibrium in potential games, where the payoff function is derived
as the derivative of a single real-valued function. We also establish global stability of Nash
equilibrium in stable games, a generalization of potential games with concave potential
functions. This leads us to establish local stability of a regular ESS, which is a state where
the payoff function locally satisfies the definition of a stable game. Analogous results are
established for the ‘canonical’ deterministic dynamics including the BRD and the replicator
dynamic in Sandholm (2001), Hofbauer and Sandholm (2009), and Sandholm (2010a). So
the tBRD has as good convergence properties as any of the standard dynamics from the
literature.

One technical contribution of the tBRD is to allow us to analyze an optimization-based
dynamic by applying results from the literature on systems of piecewise differential equations.
This is possible because the speed of transition in the tBRD continuously decreases as the
state approaches an equilibrium. We obtain sufficient conditions for uniqueness of a solution
path and local stability of an isolated Nash equilibrium. We can use a linearization technique
to investigate local dynamic properties under the tBRD, unlike the BRD.

In other contexts, a number of other authors have used status-quo bias or switching
costs to model insensitivity to negligible payoff improvements: Kuzmics (2011) and Norman
(2009, 2010) in stochastic evolution with noise; Lipman and Wang (2000, 2009) in repeated
games; Lou, Yin, and Lawphongpanich (2010) and Szeto and Lo (2006) in transportation
models.2

These papers, except Kuzmics (2011), assume a deterministic status-quo bias: an agent
maintains a threshold over time, and he revises his action if the payoff improvement exceeds
this threshold. With a deterministic status-quo bias, an agent is still discontinuously sensi-
tive to payoff differences; he switches from a suboptimal action suddenly, whenever its payoff
deficit exceeds some certain threshold. In this respect, these models resemble the standard
BRD more than the tBRD, which is derived from a stochastic status-quo bias. Interestingly,
while a deterministic status-quo bias can create non-Nash rest points, under a stochastic
status-quo bias the rest points of the dynamic are exactly the Nash equilibria of the game
being played.

This paper proceeds as follows. In the next section, we introduce population games and
review the BRD for reference. In Section 3, we build the tBRD from an exogenous revision
rate function and interpret it as a BRD with a stochastic status-quo bias and as a version
of fictitious play. In Section 4, we verify stationarity of Nash equilibrium and its stability
in various classes of games. In Section 5, we investigate implications of payoff monotonicity
of the tBRD with an emphasis on contrasts with the BRD. In Section 6, by taking the
tBRD as a system of piecewise differential equations, we establish uniqueness and stability
conditions. In the last section, we discuss general implications and possible applications of
the tBRD.

2 Population games and the best response dynamic

2.1 Population games

We consider finite-action games played in a society composed of P populations P :=
{1, . . . , P} of anonymous agents.3 Each population is a unit mass of agents with the same

2Among deterministic learning dynamics for mixed strategies with finitely many players, we could view
the target projection dynamic (Tsakas and Voorneveld, 2009) as a mixed-strategy (monomorphic) BRD with
a deterministic status-quo bias.

3For further details, see Sandholm (2010b, Ch.2).
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action set and the same payoff function.4 Each agent in population p ∈ P chooses an action
a from Ap := {1, . . . , Ap}. Let A :=

∑
p∈P Ap equal the total number of actions in all

populations.
Denote by xp

a ∈ [0, 1] the mass of action-a players in population p. The state of population
p is represented by a column vector xp := (xp

1, . . . , x
p
Ap) in X p := ∆Ap = {xp ∈ [0, 1]A

p |1 ·
xp = 1}.5 The social state is represented by a column vector x := (x1, . . . ,xP ) in X :=∏

p∈P X p.6 When we consider only a single population, we omit superscripts for p = 1.
The payoff of each action is a function of the social state. Given the state x ∈ X ,

F p
a (x) is the payoff for a player of action a ∈ Ap in population p. Define payoff functions

Fp : X → RAp

and F : X → RA by

Fp(x) :=

 F p
1 (x)
...

F p
Ap(x)

 , F(x) :=

F1(x)
...

FP (x)

 for each p ∈ P and x ∈ X .

In summary, a population game is mathematically defined by P,A and F. Henceforth, we
consider games with continuously differentiable payoff functions.

Assumption 1. The payoff function F : X → RA is continuously differentiable.

Let bp(x) ⊂ Ap be the set of (pure) best responses for an agent in population p at state
x, and let F p

∗ (x) ∈ R be the maximized payoff at this state:

bp(x) := arg max
a∈Ap

F p
a (x), F p

∗ (x) := max
a∈Ap

F p
a (x) for each p ∈ P,x ∈ X .

The Cartesian product b(x) :=
∏

p∈P bp(x) ⊂ A collects all possible combinations of optimal
actions over all populations. Let Bp(x) ⊂ ∆Ap and B(x) ⊂ ∆A be the sets of mixed best
responses for population p ∈ P and for the whole society, respectively:7

Bp(x) := {yp ∈ ∆Ap|yp
a > 0 ⇒ a ∈ bp(x)}, B(x) :=

∏
p∈P

Bp(x) for each p ∈ P,x ∈ X .

Bp(x) contains all action distributions of population p in which (almost) every agent in p
takes actions that are optimal given the payoff vector Fp(x).

The region in X where action a ∈ Ap is best response of a population-p agent is called
the best response region of action a and is denoted by (bp)−1(a). We use similar notation
for the best response region of action profile a = (a1, . . . , aP ) ∈ A:

(bp)−1(a) := {x ∈ X |a ∈ bp(x)} for each p ∈ P, a ∈ Ap,

b−1(a) := {x ∈ X |a ∈ b(x)} =
⋂
p∈P

(bp)−1(a) for each a = (a1, . . . , aP ) ∈ A.

The payoff deficit of action a ∈ Ap at state x, denoted by F̆ p
a (x), is the difference between

the payoffs from action a and from an optimal action:

F̆ p
a (x) := F p

∗ (x)− F p
a (x) for each p ∈ P, a ∈ Ap,x ∈ X .

F̆ p
a (x) is non-negative, and F̆ p

a (x) = 0 means that a ∈ bp(x). Let F̄ p(x) be the weighted
average of payoffs in population p:

F̄ p(x) := Fp(x) · xp =
∑

a∈Ap

xp
aF p

a (x) for each p ∈ P and x ∈ X .

4The assumption of unit mass is made just for notational simplicity. We could easily extend the model
and the results to general cases where different populations have different masses.

5We omit the transpose when we write a column vector on the text. The vector in a bold font is a column
vector, while the one with an arrow over the letter is a row vector. 1 is a column vector (1, 1, . . . , 1). Note
that 1 · z =

∑n
i=1 zi for an arbitrary column vector z = (zi)

n
i=1. For a finite set Z = {1, . . . , Z}, we define

∆Z as ∆Z := {ρ ∈ [0, 1]Z |1 · ρ = 1}, i.e. the set of all probability distributions on Z.
6Precisely x is an A-dimensional column vector (x1

1, . . . , x1
A1 , x2

1, . . . , x2
A2 , . . . , xP

1 , . . . , xP
AP ).

7Notice that Bp(x) = arg maxyp∈∆Ap yp · Fp(x) is a convex set for every x ∈ X .
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As usual, a Nash equilibrium is a state where (almost) every agent takes an optimal
action. Formally, a social state x = (xp)p∈P ∈ X is a Nash equilibrium if the population
state xp of every population p ∈ P is in Bp(x). For each p ∈ P, the statement xp ∈ Bp(x)
is equivalent to ∀a ∈ Ap [xp

a > 0 ⇒ F̆ p
a (x) = 0]. Let NE(F) be the set of Nash equilibria of

F.
The simplest example of a population game is single-population random matching in a

symmetric two-player normal-form game with an n × n payoff matrix Π; the population
game is defined by P = {1},A = {1, 2, . . . , n}, and F(x) = Πx. NE(F) coincides with the
set of symmetric Nash equilibria of Π. Similarly, we can define two-population random
matching in a (general) two-player normal-form game. For each p ∈ P = {1, 2}, let Ap be
the set of player p’s pure strategies and Up

ab be p’s payoff when 1 chooses strategy a ∈ A1 and
2 chooses b ∈ A2. Up

ab is the (a, b)-th cell of the matrix Up. The payoff function F is given by
F1(x) = U1x2 for population 1 and F2(x) = (U2)T x1 for population 2.8 NE(F) coincides
with the set of all (both symmetric and asymmetric) Nash equilibria of the normal-form
game (U1,U2).

2.2 The best response dynamic

In an evolutionary model of behavior in a population game, agents play the game recur-
rently over time; the social state changes as they switch their actions, and this changes
the payoff at each moment in time. An individual player only occasionally revises his ac-
tion; such a revision opportunity follows a Poisson process. The revision rate is the arrival
rate of this Poisson process. On a revision opportunity, the revising agent follows a revi-
sion protocol—e.g. myopic optimization, mutation—to decide on a new action based on the
current information on the payoff and the social state.9

The best response dynamic is defined by a constant revision rate and myopic optimiza-
tion. Although the idea naturally emerges as a disequilibrium adjustment process in eco-
nomic models, it was not until the early 1990s that BRD was formalized and investigated as
an evolutionary dynamic in a general game theoretic context. Hofbauer (1995) defines the
best response dynamic (BRD) as10

ẋ ∈ B(x)− x. (1)

To interpret this dynamic, we imagine the following revision process. An individual agent
receives a revision opportunity from a rate-1 Poisson process. At each revision opportunity,
he chooses one of the pure best responses to the current social state x. The social state
gradually moves from x toward a new action distribution. As we do not restrict how an
agent chooses a new action from multiple pure best responses, the distribution of new actions
among all the revising agents can be any convex combination of the pure best responses,
i.e. any state in B(x). Thus, the BRD may allow multiple feasible transition vectors from a
single social state x and so it is defined as a differential inclusion (a multi-valued differential
equation).

Note that, under the best response dynamic, an agent switches to an optimal action at
every revision opportunity, regardless of the payoff improvement from the switch. However,
in reality, people might ignore or even miss a chance to make small improvements, possibly
due to psychological status-quo bias or physical switching costs. On the other hand, people
would not likely miss such a chance if their present action is quite disadvantageous. In
short, we expect that the higher the payoff deficit, the more likely a change in actions. This
motivates us to modify a BRD in a way to make it sensitive to payoff deficits but still based
on optimization.

8Here MT is the transpose of a matrix M .
9See Sandholm (2010b, Ch.4). He defines each of the major evolutionary dynamics by these two com-

ponents and then induces a differential equation/inclusion from the aggregate (the mean dynamic) of the
individual revisions.

10Gilboa and Matsui (1991) and Matsui (1992) also formulate the best response dynamic in slightly
different forms.
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3 Tempered best response dynamics

To define the protocol for the tempered best response dynamic (tBRD), we first assume
directly that each agent’s revision rate depends exogenously on his payoff deficit. We discuss
that this model is equivalent to one defined by a stochastic status-quo bias. We interpret
the tBRD as an approximation of the fictitious play like the BRD. In the end of this section,
we confirm the existence of a solution from any initial state.

3.1 Defining the tBRD

Keeping myopic optimization for the revision protocol from the standard BRD, now we
assume that, given the current payoff vector πp, the revision rate of an action-a player
in population p is Q(π̆p

a) with a function Q : R+ → [0, 1] of his current payoff deficit
π̆p

a := maxb∈Ap πp
b −πp

a. We further assume that the greater the payoff deficit of the current
action, the more likely an agent is to abandon this action:

Assumption 2. The function Q : R+ → [0, 1] is strictly increasing and continuously differ-
entiable.

In addition, to make a clear distinction from the BRD, we also assume the following.

Assumption 3. The function Q : R+ → [0, 1] satisfies Q(0) = 0 and Q(q) > 0 for all q > 0.

In words, Assumption 3 says that revision opportunities never arrive as long as the agent
is taking an optimal action and otherwise he receives an opportunity with some positive
probability. By this tempering function Q, the frequency of revision is tempered in a way
sensitive to the payoff deficit, compared to the standard BRD with the revision rate 1.

Now consider how the social state changes in an infinitesimal period of time [t, t + dt]
under tempered revision rates and myopic optimization. As the total mass of action-a
players is xt,p

a and their revision rates are Q(F̆ p
a (xt)) in the current social state xt, the mass

xt,p
a Q(F̆ p

a (xt))dt revises actions from action a in this period. Like with the standard BRD,
each of them individually switches to any of the pure best responses to the current social
state xt. The new action distribution among them is represented by yp

a ∈ Bp(xt), while the
old one is ep

a as they were all playing action a before this revision. Their revisions change
the population state by xt,p

a Q(F̆ p
a (xt))dt(yp

a − ep
a). Aggregating such changes over the mass

of each action players in population p, we obtain the total transition of the population state
xp in this period:

xt+dt,p − xt,p =
∑

a∈Ap

xt,p
a Q(F̆ p

a (xt))dt(yp
a − ep

a) for each p ∈ P.

Dividing both sides by dt and taking the limit of dt → 0, we have11

ẋt,p =
∑

a∈Ap

xt,p
a Q(F̆ p

a (xt))(yp
a − ep

a) ∈
∑

a∈Ap

xt,p
a Q(F̆ p

a (xt))(Bp(xt)− ep
a) for each p ∈ P.

Define the tempered best response correspondence BQ : X ⇒ X by BQ(x) :=
∏

p∈P Bp
Q(x)

with Bp
Q : X ⇒ X p given by

Bp
Q(x) :=

∑
a∈Ap

xp
a

{
Q(F̆ p

a (x))Bp(x) + (1−Q(F̆ p
a (x)))ep

a)
}
⊂ X p for each p ∈ P.

11Roth and Sandholm (2012) consider finite-population optimization-based evolutionary dynamics, in-
cluding tBRD, both in discrete and continuous time horizons. They prove that, as the size of a population
goes to infinity, both the medium and long run behavior of the dynamic is well approximated by the infinite-
population dynamic such as the one presented here.
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Then we define the tempered best response dynamic (tBRD) as the differential inclusion
below induced from a tempering function Q:12

ẋ ∈ BQ(x)− x =: VQ(x) ⊂ TX . (2)

While we have defined the tBRD from tempered revision rate, we can interpret this as
a BRD with stochastic status-quo biases. That is, upon each revision opportunity whose
arrival rate is one, an agent draws a status-quo bias q ≥ 0 from the distribution function
Q.13 The agent switches to a pure best response b ∈ bp(x) only if the switch makes the payoff
improvement greater than the status-quo bias q, namely if F̆ p

a (x) > q where a is his action
before revision. So, before the status-quo bias is drawn, the probability that an action-a
agent makes a switch receiving the revision opportunity is just Q(F̆ p

a (x)). Therefore, the
proportion of those who actually make switches among all action-a players is only Q(F̆ p

a (x)),
just the same as in the case of the tempered revision rate. As a result, we obtain the same
population dynamic as (2).

The payoff sensitivity of the revision rate makes the direction of the transition different
from the standard BRD, as it creates a bias in the selection of revising agents. Provided
that the average revision rate

Q̃p(x) :=
∑

a∈Ap

xp
aQ(F̆ p

a (x)) ∈ [0, 1]

is not zero, tBRD (2) simplifies to

ẋp = Q̃p(x)(ỹp(x)− x̃p(x)) ∈ V p
Q(x) = Q̃p(x)(Bp(x)− x̃p(x)), (3)

where

ỹp(x) :=
∑

a∈Ap

xp
aQ(F̆ p

a (x))
Q̃p(x)

yp
a(Fp(x)) ∈ Bp(x) and x̃p(x) :=

∑
a∈Ap

xp
aQ(F̆ p

a (x))
Q̃p(x)

ep
a ∈ ∆Ap.

Here x̃p
a = xp

aQ(F̆ p
a (x))/Q̃p(x) is the proportion of revising agents who originally played

action a. So x̃p = (xp
aQ(F̆ p

a (x))/Q̃p(x))a∈Ap ∈ ∆Ap is the distribution of actions among
revising agents in the population p, and ỹp ∈ Bp(x) is their action distribution after the
revision. By assumption 2, the rate at which revision opportunities are received is larger
for a larger payoff deficit. This causes a selection bias in the distribution of old actions
among revising agents, x̃. In contrast, under the standard BRD (1), the rate at which
revision opportunities are received is independent of agents’ actions and payoffs. Thus the
old action distribution of revising agents is just the same as the social state x. We illustrate
this difference geometrically in the following examples.14

Example 1. Consider a single population with three actions A = {1, 2, 3}. Suppose that the
social state is x = (1/3, 1/3, 1/3) and that payoffs satisfy F1(x) > F2(x) > F3(x), so that
the best response is action 1: B(x) = {e1}.

Under the BRD, the social state changes towards e1 = (1, 0, 0). As we noted before, the
action distribution of revising agents, x̃, coincides with the social state x.

Switching the action to the best response gives more payoff improvement to an action
3 player than an action 2 player. So tBRD gives revision opportunities more quickly to
action 3 players than action 2 players, and gives no opportunities to action 1 players: Q3 >
Q2 > Q1 = 0. So although the current state is x = (1/3, 1/3, 1/3), the action distribution x̃
among revising players satisfies

x̃3 =
Q3

Q3 + Q2
> x̃2 =

Q2

Q3 + Q2
> x̃1 = 0.

12Here TX :=
∏

p∈P TX p and TX p is the tangent space of X p ⊂ RAp
, i.e. TX p := {zp ∈ RAp |1 ·zp = 0}.

13Assumption 2 indeed enables us to interpret Q as a distribution function.
14When x is fixed or clear from the context, we abbreviate Q(F̆ p

a (x)) as Qp
a and Q′(F̆ p

a (x)) as Qp′
a .
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BRD: ẋ = e1 − x

e1

e2 e3

x = ( 1
3 , 1

3 , 1
3 )

ẋ = e1 − x

tBRD: ẋ = Q̃ · (e1 − x̃)

e1

e2 e3

x

x̃

e1 − x̃ẋ = Q̃ · (e1 − x̃)

Figure 1: Example 1. F1(x) > F2(x) > F3(x).

BRD: ẋ ∈ B(x)− x

e1

e2 e3

x = ( 1
3 , 1

3 , 1
3 )

e1 − x

e2 − x

ẋ

tBRD: ẋ ∈ Q̃ · (B(x)− e3)

e1

e2 e3

x

x̃ = e3

e2 − e3

e1 − e3

Q̃ · (e2 − e3)

Q̃ · (e1 − e3)
ẋ

Figure 2: Example 2. F1(x) = F2(x) > F3(x). Here the mixed best response B(x) is all convex
combinations of e1 and e2, i.e. {λe1 + (1 − λ)e2|λ ∈ [0, 1]}.

In tBRD, the vector e1− x̃ is the change in the action distribution over the revising agents.
Shrinking this vector by the proportion of revising agents Q̃, we obtain the change in the
action distribution of the whole society ẋ = Q̃ · (e1 − x̃).

Example 2. Consider the same situation as above, i.e. a single population, A = {1, 2, 3} and
x = (1/3, 1/3, 1/3), but suppose that the payoff ranking is F1(x) = F2(x) > F3(x), so that
actions 1 and 2 are both best responses.

Under BRD, the social state can move toward any point between e1 and e2. Notice that
BRD allows action 2 players to revise their actions to action 1 and vice versa. However,
such a revision does not improve their payoffs.

With Assumption 3, tBRD does not let action 1 and action 2 players revise their actions.
Hence, only action 3 players revise their actions to either action 1 or action 2. So the mass
of revising agents consists entirely of action 3 players: x̃ = e3. Their new action distribution
can be any convex combination between e1 and e2. Noticing that the mass of revising agents
is just Q̃ = x3Q3 < 1, we find that the set of feasible transition vectors ẋ under the tBRD
is the set of all convex combinations of x3Q3(e1 − e3) and x3Q3(e2 − e3).

In general, any two transition vectors from a single social state always form an acute
angle under the tBRD, while they may form an obtuse angle under the standard BRD as
Figure 2 shows. By (3), any two feasible non-zero transition vectors v,w ∈ V (x) from x
under the tBRD can be written as v = Q̃(x)(y− x̃) and w = Q̃(x)(z− x̃) with y, z ∈ B(x).
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Let θ be their angle. Then,

cos θ =
v ·w

‖v‖ · ‖w‖
=

(y − x̃) · (z− x̃)
‖y − x̃‖ · ‖z− x̃‖

=
y · z− y · x̃− z · x̃ + ‖x̃‖2

‖y − x̃‖ · ‖z− x̃‖
.

By x̃,y, z ∈ X ⊂ RA
+ \ {0}, we have y · z ≥ 0 and ‖x̃‖ > 0. If yp

a > 0, a is an optimal action
and x̃p

a = 0 by Assumption 3; hence, we have y · x̃ = 0 and similarly z · x̃ = 0. So we have
cos θ > 0; that is, the angle θ between the two transition vectors is acute.

3.2 Interpretation as fictitious play

It is well known that the standard BRD captures the transition of beliefs in fictitious play
learning. So it is natural to interpret the tBRD as a version of fictitious play. In standard
fictitious play, agents recursively play a game in a discrete-time setting. In each period, they
observe the empirical distribution of past actions; each plays best responses to it, believing
that his opponents choose their actions according to this distribution.

For simplicity, consider a single population of continuously many agents who have com-
mon belief. Let θt ∈ X be the empirical action distribution (belief) at the beginning of
period t and yt be the distribution of actions taken in period t. Then they follow

θt =
1

t− 1

t−1∑
τ=1

yτ , i.e. θt − θt−1 =
1

t− 1
(yt−1 − θt−1), and

yt ∈ B(θt);

(4)

∴ θt+1 − θt ∈ 1
t
(B(θt)− θt) for each t ∈ N.

Benäım, Hofbauer, and Sorin (2005) prove that the standard BRD (1) approximates this
process of belief under standard fictitious play.

By replacing the best response correspondence B with the tempered one BQ, we obtain

θt+1 − θt ∈ 1
t
(BQ(θt)− θt) for each t ∈ N. (5)

Similarly to the standard BRD and fictitious play, the tempered BRD (2) approximates this
process.15

To interpret (5), we reinterpret fictitious play as follows. At each period, a unit mass of
new agents enter the society. They observe past actions made by all the incumbents (not
only the last entrants). Then, the entrants play the best response to it. Each agent plays
an action only once. At the beginning of period t, the total mass of the incumbents is t− 1
and the proportion of the mass of the entrants among all the agents in the society is just
1/t. The distribution of the new actions made in period t and the distribution of the past
actions observed at the beginning of period t coincide with yt and θt in (4).

Now we introduce a status-quo bias to the protocol to decide on a new action. When
entering the society, each entrant randomly meets with one of the incumbents and takes her
action as a ‘default.’ He also observes θt and takes it as his belief about his opponents’
actions. Then, the entrant draws a status-quo bias from the distribution function Q. Ac-
cording to θt, if he believes payoff improvement exceeds the status-quo bias, he plays a pure
best response; otherwise, he plays the default action. Then θt and yt jointly follow

θt =
1

t− 1

t−1∑
τ=1

yτ , i.e. θt − θt−1 =
1

t− 1
(yt−1 − θt−1), and

yt ∈
∑
a∈A

θt
a

{
Q(F̆a(θt))B(θt) + (1−Q(F̆a(θt)))ea

}
,

which reduces to (5).
15See Benäım, Hofbauer, and Sorin (2005, Prop. 1.3). Note that here we consider a deterministic process

over a discrete time horizon in a population of continuously many agents.
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3.3 Existence of solution paths

Like with the BRD, existence of solution paths under the tBRD is not guaranteed by stan-
dard results for differential equations. This is not only because there may be multiple
transition vectors from a single state, but also because the transition vector discontinuously
changes when the state crosses the best response regions. So we may not find a solution
path that is differentiable at every moment in time. To ensure the existence of solutions
while allowing change in best responses, we adopt a Carathéodory solution. That is, we
allow a solution path not to be differentiable and not to have ẋt ∈ VQ(xt) at a measure-zero
set of moments in time, while requiring Lipschitz continuity at every time.

Doing so, we can guarantee the existence of a solution path under the tBRD. Note that,
unlike a differential equation, uniqueness of a solution is not guaranteed. For example, a
typical coordination game, e.g. F(x) = x, allows multiple solution paths if there are multiple
optimal best responses to the initial state. In Section 6, we present a uniqueness condition
that is peculiar to the tBRD.

Proposition 1. Consider a tBRD ẋ ∈ VQ(x) and assume Assumptions 1-3. From any
state x ∈ X , there exists a Carathéodory solution that starts at x and remains in X for all
positive times.

Proof. The correspondence VQ : X ⇒ TX is nonempty-, closed- and convex-valued, upper
semi-continuous and bounded like the best response correspondence. Then, the existence of
a solution path is verified by Smirnov (2001, Corollary 4.4).

4 Stationarity and stability of Nash equilibrium

There are several basic properties that a ‘reasonable’ evolutionary dynamic should satisfy:
stationarity of Nash equilibrium and its stability in some classes of games. Here we confirm
that the tBRD preserves all these properties. In particular, the tBRD retains the regular
sense of Nash stationarity that is lost in the standard BRD. In the last part of this section,
we argue that the best response property, shared by the BRD and the tBRD, implies Nash
stability distinct from other evolutionary dynamics such as the replicator dynamic.

4.1 Nash stationarity and positive correlation

Because of its status-quo bias, tBRD retains the ‘standard’ Nash stationarity, stronger than
that of the BRD. Under the BRD, a stationary ‘path’ (staying at the same state forever)
is always possible at a Nash equilibrium, but the BRD may allow the social state to move
away; x being a Nash equilibrium only implies that 0 is one possible transition vector,
and not that 0 is the only one. Actually, at an interior Nash equilibrium, all actions are
optimal; hence, multiple directions of transition are possible.16 In contrast, the tBRD never
admits transition vectors other than 0 or any paths other than a stationary path at a Nash
equilibrium.

Theorem 1 (Nash stationarity). Consider a tBRD ẋ ∈ VQ(x); suppose Assumption 3 holds.

1. If the state x ∈ X is a Nash equilibrium, then VQ(x) = {0}.

2. If the state x ∈ X is not a Nash equilibrium, then 0 /∈ VQ(x).

3. In addition, suppose Assumptions 1 and 2 hold. If the state x∗ ∈ X is a Nash equi-
librium, then the stationary path xt ≡ x∗ is the unique Carathèodory solution from
x0 = x∗.

16However, not every direction can be maintained once the state leaves the equilibrium; a transition vector
has to be consistent with the best response at off-equilibrium states in the direction of its vector. We can
see this in the examples that follow.
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Proof. See Appendix A.1

As well as Nash stationarity, positive correlation is shared by most major evolutionary
dynamics and is thought as one of the desiderata that a dynamic should satisfy for consis-
tency with incentives.17 Positive correlation means that the growth of the mass of players
playing each action ẋp

a should have positive correlation with its current payoff F p
a (x), i.e.

F(x) · ẋ ≥ 0, and especially that F(x) · ẋ = 0 iff x is a Nash equilibrium. Geometrically, the
transition vector ẋ from a state x always forms an acute angle with the payoff vector F(x)
at the state.

Under the BRD, Fp(x) · ẋ is always equal to the relative payoff of the optimal action:
since ẋp = yp − xp with some yp ∈ Bp(x), we have

Fp(x) · ẋ = Fp(x) · (yp − xp) = F p
∗ (x)− F̄ p(x).

This is always non-negative, and zero iff xp ∈ Bp(x). Under the tBRD, Fp(x) · ẋ is equal
to the sum of all payoff improvements gained by revising players; this suggests the tBRD
should also satisfy positive correlation. We verify this in the following result.

Theorem 2 (Positive correlation). Given a state x ∈ X , let z ∈ VQ(x) be a transition
vector under tBRD. Then 1) for each population p ∈ P,

Fp(x) · zp =
∑

a∈Ap

xp
aQ(F̆ p

a (x))F̆ p
a (x) ≥ 0.

Furthermore, suppose that Assumption 3 holds. Then 2) Fp(x) ·zp > 0 if and only if zp 6= 0.
3) If F(x) ·z > 0 with some z ∈ VQ(x), then x is not a Nash equilibrium. If x is not a Nash
equilibrium, any z ∈ VQ(x) satisfies F(x) · z > 0.

Proof. See Appendix A.2.

4.2 Stability of Nash equilibrium

We now show that tBRD preserves stability of Nash equilibria in some classes of games.
This result shows not only generality of stability but also clarifies the incentive structure
behind these games. As tBRD is a differential inclusion and allows multiple solution paths,
we need to define ‘stability’ in terms of convergence to the rest point on any solution path.
For examples of classes of games mentioned here, see Chapter 3 of Sandholm (2010b).

Definition 1 (Sandholm, 2010b: Sec. 7.A.). Consider a differential inclusion ẋ ∈ V (x)
defined over X and a closed set A ⊂ X . A is Lyapunov stable under V if for any open
neighborhood O of A there exists a neighborhood O′ of A such that every solution {xt} that
starts from O′ remains in O. A is attracting if there is a neighborhood B of A such that
every solution that starts in B converges to A. A is globally attracting if it is attracting with
B = X . A is asymptotically stable if it is Lyapunov stable and attracting; it is globally
asymptotically stable if it is Lyapunov stable and globally attracting.

The stability of Nash equilibria in a potential game is a straightforward implication of
positive correlation and is known to be useful in implementing a social optimum through
a dynamic version of Pigouvian taxing.18 A population game F : X → RA is called a
potential game if there is a real continuously differentiable function f : X → R whose
gradient vector always coincides with the relative payoff vector: for all p ∈ P and x ∈ X

∂f

∂xp
a
(x) = F p

a (x)− F̄ p(x) for all a ∈ Ap,

17See Sandholm (2010b, Sec.5.3). Among major dynamics, the logit dynamic does not satisfy Nash
stationarity or positive correlation. The replicator dynamic does not satisfy Nash stationarity, as it may
have a rest point that is not a Nash equilibrium.

18See Sandholm (2002, 2005).
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i.e. ∇pf(x) :=
(

∂f

∂xp
1

(x), . . . ,
∂f

∂xp
Ap

(x)
)T

= Fp(x)− F̄ p(x)1.

The class of potential games includes random matching in symmetric games, binary choice
games and a standard congestion games. The potential function f works as a Lyapunov
function in a wide range of evolutionary dynamics: replicator, BRD, etc. So in a potential
game, the set of Nash equilibria is globally asymptotically stable under these dynamics.
Now we add the tBRD to the list of stable dynamics in potential games.

Theorem 3. Consider a potential game F : X → RA with a twice continuously differen-
tiable potential function f .19 Then, the set of Nash equilibria NE(F) is globally attracting.
Moreover, each local maximizer of f is Lyapunov stable under any tBRD with Assumptions
2 and 3.

Proof. From the definition of a potential function and the fact that 1 · ẋp = 0, possitive
correlation implies ḟ(x) =

∑
p∇pf(x) · ẋp ≥ 0, especially ḟ(x) = 0 iff x ∈ NE(F). So

f is a strict Lyapunov function. Then, each local maximizer of f is Lyapunov stable and
the set of stationary points, i.e. NE(F), is globally attracting (Sandholm, 2010b, Theorems
7.B.2,4).

The existence of a potential function seems to be a strong assumption on a game. Stable
games are a generalization of potential games with concave potential functions. A population
game F is a stable game if

(y − x) · (F(y)− F(x)) ≤ 0 for all x,y ∈ X .

The class of stable games includes two-player zero-sum games as well as games with an
interior evolutionary stable state or neutrally stable state.

Hofbauer and Sandholm (2009) show that the set of Nash equilibria of a stable game is
globally asymptotic stable under a broad class of evolutionary dynamics. Unlike a potential
game, a stable game requires us to find a Lyapunov function by ourselves. Looking carefully
at known Lyapunov functions in other dynamics, we can find that the basic idea seems to
track the increase of net payoff improvement of revising agents, whose meaning depends
on the revision protocol of a dynamic.20 Seeing Q as the distribution of stochastic status-
quo biases added to the genuine payoff rather than exogenous tempering of revision rates,
we indeed obtain a Lyapunov function L(x) as the sum of all revising players’ net payoff
increases F̆ p

a (x)− q integrated over the possible status-quo biases q:

L(x) :=
∑
p∈P

∑
a∈Ap

xp
a

∫ F̆ p
a (x)

0

(F̆ p
a (x)− q)Q′(q)dq (6)

Theorem 4. Consider a stable game with Assumption 1. Then, the set of Nash equilibria
NE(F) is globally asymptotically stable under any tBRD with Assumptions 2 and 3.

Proof. See Appendix A.3
19Note that the twice continuous differentiability of f is imposed for the continuous differentiability of

F = ∇f , i.e. Assumption 1.
20For the Lyapunov functions in other dynamics, see Hofbauer and Sandholm (2009). In the BRD

ẋ ∈ B(x) − x, it is the difference between the optimized payoff and the current average payoff:
L(x) =

∑
p F p

∗ (x) = maxy∈X (y − x)′F(x). In the perturbed BRD ẋ ∈ B̃(x) − x with B̃p(x) =

arg maxy∈Xp y′Fp(x) − vp(yp), it is the difference between the maximized payoff and the average pay-
off net of the payoff perturbations: L(x) =

∑
p

[
maxy∈Xp (y − x)′Fp(x)− (vp(yp)− vp(xp))

]
. Note that,

in these dynamics, the rate at which revision opportunities are received is independent of the current payoff;
thus, the average payoff of the population is equal to that of the revising agents, while they are different in
tBRD because of its payoff-sensitive revision rates.
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Furthermore, we can extend this idea of a Lyapunov function to local stability of a
‘regular’ ESS, by modifying it for a boundary equilibrium. A state x∗ ∈ X is a regular
(Taylor) evolutionary stable state if it is a quasi-strict equilibrium21 and it satisfies

(y − x∗) ·DF(x∗)(y − x∗) < 0 whenever (y − x∗) · F(x∗) = 0 and y ∈ X \ {x∗}.

Let Up be the set of population p’s unused actions in the regular ESS x∗. Then the latter
condition can be replaced with

z ·DF(x∗)z < 0 whenever z ∈ TX and zp
b = 0 for any b ∈ Up.

This condition means that the game F is a strictly stable game locally around the quasi-strict
equilibrium x∗ in the reduced state space where any action unused in x∗ is kept unused.

For the BRD, Sandholm (2010a) constructs a Lyapunov function for a regular ESS by
adding (a constant times) the total number of players who use the actions unused at the
regular ESS to the Lyapunov function for a stable game. The same idea is applied to the
tBRD; define a function L∗ : X → R by

L∗(x) = L(x) + C
∑
p∈P

∑
b∈Up

xp
b ,

where L : X → R is the Lyapunov function (6) for a stable game and C ∈ R is a constant. In
Appendix A.4, we prove that this function L∗ works as a Lyapunov function for the regular
ESS x∗ when C is sufficiently large positive.

Theorem 5. Consider a game with Assumption 1. Suppose x∗ ∈ X is a regular ESS. Then,
it is locally asymptotically stable under any tBRD with Assumptions 2 and 3.

Proof. See Appendix A.4

All the stability results so far are guaranteed for all of the major evolutionary dynamics
such as the best response and replicator dynamics. However, Kojima and Takahashi (2007)
found a fairly general class of games where a Nash equilibrium is unique and stable in
the best response and perfect foresight dynamics but the replicator and perturbed best
response (e.g. logit) dynamics do not guarantee even local stability of Nash equilibrium.
Single-population random matching in a symmetric two-player normal-form game is called
an anti-coordination game if at any social state x, the worst response is in the support
of x: namely each of the worst actions are taken by a positive mass of agents.

Kojima (2009) defines the “best response property” of a deterministic evolutionary dy-
namic as follows:

Definition 2 (Kojima, 2009). An evolutionary dynamic is said to satisfy the best response
property if any solution path {xt}t≥0 satisfies

a /∈ bp(xt), xt,p
a > 0 ⇒ ẋt,p

a < 0. (7)

The BR property means that a suboptimal action never has the mass of its players
increase. Perturbed BRDs such as the logit dynamic and imitative dynamics such as the
replicator dynamic do not satisfy this property. It is easy to see that Assumption 3 implies
that the tBRD satisfies the best response property. Kojima (2009) further verifies that
this property implies global stability of the unique Nash equilibrium in an anti-coordination
game. So the BR property and thus Nash stability in anti-coordination games distinguish
evolutionary dynamics based on optimization like the BRD and the tBRD from other evo-
lutionary dynamics like the replicator dynamic.

21x∗ is a quasi-strict equilibrium, if F∗(x∗) = Fa(x∗) > Fb(x
∗) for any population p ∈ P, any used action

a and any unused action b, i.e. whenever x∗a > 0 and x∗b = 0.
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5 Payoff monotonicity of the tBRD

Payoff sensitivity of revision rates creates a clear distinction between the tempered BRD
and the standard BRD. While all suboptimal actions decrease their mass of players at the
same rate in the BRD, a better suboptimal action decays slower than worse ones in the
tBRD. Furthermore, while an optimal action may see the mass of its players decrease just
as fast as suboptimal actions do under the BRD when there are multiple best responses,
Assumption 3 prevents its mass of players from decreasing under the tBRD. In sum, the
growth rate of each action’s players in the tBRD respects the payoff ordering and thus the
tBRD is a payoff monotone selection:

Definition 3. An evolutionary dynamic is said to satisfy payoff monotonicity and is
called a payoff monotone selection if any interior solution path {xt}t≥0 ∈ X̊ := X ∩ (0, 1)A

satisfies both of the following two conditions for almost all time t ∈ R+ := [0,∞), any p ∈ P
and any a, b ∈ Ap:22

F p
a (xt) > F p

b (xt) ⇒ ẋt,p
a

xt,p
a

>
ẋt,p

b

xt,p
b

, (8)

a ∈ bp(xt) ⇒ ẋt,p
a ≥ 0. (9)

Furthermore, we call it a regular payoff monotone selection if

lim inf
t→∞

{F p
a (xt)− F p

b (xt)} > 0 ⇒ lim inf
t→∞

(
ẋp,t

a

xp,t
a

−
ẋp,t

b

xp,t
b

)
> 0.

The replicator dynamic, perturbed best response dynamics such as the logit dynamic,
and the tBRD are regular payoff monotone selections, while the standard BRD and its recent
variants such as the refined BRD and the sampling BRD are not.23 The tBRD resembles
the replicator dynamic in some games because of payoff monotonicity, while it behaves more
like the BRD than the replicator dynamic in others, e.g. anticoordination games, because
of the BR property.24 In the following, we see cases where the payoff monotonicity of the
tBRD eliminates pathological outcomes from the standard BRD.

5.1 Elimination of pathological indeterminacy and cycles

In the example below, the BRD allows multiple solution paths from the interior Nash equi-
librium, including cycles and escaping paths to other Nash equilibria (Hofbauer, 1995, Ex-
ample 3.2). As such multiplicity takes place in a positive-measure set of initial states, this
multiplicity cannot be negligible.

The payoff monotonicity of tBRD determines a unique Carathèodory solution path from
all points; in particular, it selects only the stationary path from the interior equilibrium,
and retains local stability of the interior Nash equilibrium like replicator dynamic.
Example 3 (Zeeman’s game). Consider a single-population random matching game with
A = {1, 2, 3} and the payoff function F given by

F(x) =

 0 6 −4
−3 0 5
−1 3 0

x =

 6x2 − 4x3

−3x1 + 5x3

−x1 + 3x2

 . (10)

22In the preceding literature (e.g. Weibull (1995, Definition 4.2.) and Hofbauer and Sigmund (1998,

p.88)), payoff monotonicity requires “two-sided” monotonicity: F p
a (xt) > F p

b (xt) ⇔ ẋt,p
a /xt,p

a > ẋt,p
b /xt,p

b ,
which implies both of (8) and (9). The tBRD does not satisfy the two-sided monotonicity, because multiple
optimal actions can have the masses of their players grow at different rates. See Zusai (2012b).

23See Balkenborg, Hofbauer, and Kuzmics (2012) for the refined BRD and Oyama, Sandholm, and Tercieux
(2010) for the sampling BRD.

24Golman and Page (2010) present several games with multiple equilibria where the best response and
replicator dynamics may yield significantly different basin of attraction sizes across equilibria of the same
game. The basin of attraction under the tBRD is the same as that under the BRD in one of their examples
(the Haruvy-Stahl game) and is similar to that under the replicator dynamic in another example (the game
used to prove their Theorem 2).
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(a) Solution paths in the BRD
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Figure 3: Zeeman’s game (Example 3). In (b), x is near above the line x∗y∗. The number in bold
shows the optimal action in the region, and the solid lines indicate boundaries of best response
regions.

This game has three Nash equilibria: e1 = (1, 0, 0),x∗ = (1/3, 1/3, 1/3),y∗ = (4/5, 0, 1/5).25

Under the BRD, there are multiple solution paths starting from each point in the triangle
x∗y∗z (Hofbauer, 1995). First, from x∗, the state can stay at x∗ or move towards e1 or
towards y∗. Second, at any point on the boundary of the BR regions of actions 2 and 3,
b−1(2) ∩ b−1(3), the state can move towards e1 or y∗, or even towards e3.26 If it moves
towards e3, the path hits the boundary b−1(2)∩ b−1(3) and then slides on this line towards
x∗. After reaching x∗ in finite time, the multiplicity of transition vectors remains. So,
from any point in b−1(3), the BRD allows continuously many trajectories. In particular, we
cannot tell whether or not the interior Nash equilibrium can be ‘sustained’ in the BRD.

Look carefully at the transition from the state on the boundary b−1(1) ∩ b−1(3). When
it goes to e1 or y∗ in the tBRD, action 1 increases its players and remains optimal. The
suboptimal action 2, which favors action 1 more than action 3, decreases its players; action
1 could not remain optimal without significant decrease of action 3. But action 3 players do
not have an incentive to abandon this action when the social state is on the boundary, so
the BRD paths going to e1 or y∗ do not have sensible economic interpretations.

The tBRD eliminates all of the sources of multiple solution paths. First, the strong Nash
stationarity (part 3 of Theorem 1) eliminates any escaping paths starting from the interior
Nash equilibrium x∗. Furthermore, payoff monotonicity forces the social state on the BR
boundary b−1(1)∩b−1(3) to enter b−1(3). Under the tBRD, only action 2 players revise their
actions on this boundary, so action 1 cannot maintain its optimality and action 3 becomes
the unique best response. We can geometrically determine the transition vectors near each
boundary of b−1(·) from such an argument; see Fig. 3 (b).

Fig. 4 illustrates that, starting from any point sufficiently close to the interior Nash
equilibrium x∗, the social state converges to x∗ under the tBRD: x∗ is an attracting rest
point. There is no deviation from the interior Nash equilibrium x∗ to other Nash equilibria
y∗ and e1 under the tBRD. In particular, any cycle starting from x∗ or from b−1(3) is
impossible. The social state may, however, escape from a neighborhood of x∗ for a while,

25Originally this example is presented in Zeeman (1980) to show that an interior Nash equilibrium that is
not an evolutionary stable state (ESS) can be asymptotically stable under the replicator dynamic. See also
Sandholm (2010b, Example 5.1.7).

26Note that the transition vectors to e1 and e3 form an obtuse angle.
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Figure 4: Solution paths under the tBRD in Zeeman’s game (Example 3), drawn with Dynamo.
The boldest line ending at y∗ separates the basins of attraction to the Nash equilibria e1 and x∗.

as seen in Fig. 4; so x∗ is not Lyapunov stable under the tBRD, unlike under the replicator
dynamic, where x∗ is asymptotically stable, namely Lyapunov stable as well as attracting.

5.2 Interior convergence and equilibrium refinement

It is a natural idea to see an interior convergence path under an evolutionary dynamic as a
sequence of perturbed states to define a refined equilibrium. Hofbauer (1995) proves that
a Nash equilibrium is trembling-hand perfect in a normal form game if and only if there
is an interior convergence path to it under the BRD in a random matching of the game.
Zusai (2012b) investigates a situation where such a connection holds between regular payoff
monotone selections and proper equilibrium.27 Since the tBRD is a regular payoff monotone
selection, we can apply this result to the tBRD.

27A social state x ∈ X is an ε-proper equilibrium with ε > 0, if x lies in the interior of X and it satisfies
xp

a < εxp
b whenever F p

a (x) < F p
b (x) for all p ∈ P, a, b ∈ Ap. A social state x∗ ∈ X is a proper equilibrium

if there are sequences {xn} ⊂ X and {εn} ⊂ (0,∞) such that each xn is an εn-proper equilibrium and the
sequence {(xn, εn)} satisfies xn → x∗ and εn → 0 as n →∞.

In a simple two-stage chain-store game, an interior path converges to a Nash equilibrium with a weakly
dominated strategy both under the replicator dynamic and under the tBRD, while only to a strict equilibrium
under the BRD. (Zusai, 2012b; Cressman, 2003, p.291.) So this connection cannot be generalized.
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Theorem 6. Consider a tBRD ẋ ∈ VQ(x) in a random matching of a normal form game
G. Assume Assumptions 1–3. Suppose that there exists an interior path {xt}t∈R+ ⊂ X̊
converging to a state x∞ ∈ X under the tBRD.

Furthermore, suppose that (i) sgn(F p
a (xt) − F p

b (xt)) = sgn(F p
a (x0) − F p

b (x0)) for all
t ∈ R+ and a, b ∈ Ap, p ∈ P, (ii-1) x∞,p

a = 0 if F p
a (xt) < F p

∗ (xt) at any t ∈ R+ and a ∈ Ap,
and (ii-2) F p

a (x∞) = F p
b (x∞) implies F p

a (xt) = F p
b (xt) for all t ∈ R+ unless either a or b is

optimal on the path. Then x∞ is a proper equilibrium in G. If G is the normal form of an
extensive-form game, x∞ is a sequential equilibrium and thus a subgame-perfect equilibrium.

Proof. Zusai (2012b) verifies this theorem for regular payoff monotone selections. We apply
it to the tBRD, as it is a regular payoff monotone selection.

Proper equilibrium is stronger than trembling-hand perfect equilibrium and implies sub-
game perfect equilibrium in any corresponding extensive form, while trembling-hand perfect
equilibrium does not. In the following example, the tBRD has a stronger power to select
equilibrium than the BRD, because only a proper equilibrium is chosen as a stable state
in the tBRD. Note that equilibrium refinements such as proper equilibrium require agents’
beliefs to be so sophisticated as to take others’ rationality into account.28 The result here
suggests that myopic interaction between boundedly rational agents eventually reaches the
same outcome in the long run.

Example 4. Consider a two-player sequential-move game in Fig. 5 (van Damme, 1991,
Fig. 6.5.1). In this example, both (A, r) and (L, l) are trembling-hand perfect in the normal
form and sequential equilibria in the extensive form. (L, l) is the only proper equilibrium
and (A, r) is not. Actually, (A, r) is not a plausible outcome, because to choose r, player 2
should believe that player 1 plays R with higher probability than L. But R is always worse
than L for player 1 and thus this belief seems inconsistent with 1’s rationality. We wonder
if such an implausible outcome would be sustained in the long run.

Let us consider two-population random matching in the normal form of this game. Under
the BRD, since (A, r) is perfect, there is an interior convergence path to it. Actually, if the
social state lies in the interior of b−1(A, r) = {x ∈ X |x1

L ≤ x1
R, x2

l ≤ 1/3}, the unique best
response is (A, r) and the social state linearly converges to (e1

A, e2
r). But this path does not

respect payoff monotonicity: R is worse than L but both decrease their players at the same
rates on this path.

Under the tBRD, payoff monotonicity eliminates such paths. Consider an interior solu-
tion path starting from b−1(A, r) under the tBRD. Theorem 6 guarantees that the state does
not reach the non-proper equilibrium (e1

A, e2
r) without reversing either inequality x1

L ≤ x1
R

or x2
l ≤ 1/3. As x2

l decreases and the latter inequality keeps holding as long as the for-
mer inequality is satisfied, the former should be reversed and the state should escape from
b−1(A, r) to b−1(A, l). (See period 19 in Figure 5 (d,f).) After this, l remains optimal be-
cause payoff monotonicity keeps the inequality x1

L ≥ x1
R. x2

l eventually exceeds 1/3 and the
social state goes into b−1(L, l). (See period 48.) Then, L becomes optimal for population
1, as well as l for population 2. So the social state converges to (e1

L, e2
l ), i.e. the proper

equilibrium (L, l). This convergence result is readily generalized to any regular monotone
selection; see Zusai (2012b).

6 Continuous payoff-sensitivity of the tBRD

One of the disadvantages of the standard BRD is discontinuity of the transition vector around
equilibrium, which disables linear approximation and local stability analysis by the Hessian
matrix. The continuous payoff sensitivity of the tBRD reduces the prevalence of this kind of
discontinuity, though the transition vector remains discontinuous on the boundary of best
response regions except at equilibrium. Here we argue that this allows linear approximation
of the tBRD.

28For epistemological foundation of properness, see Blume, Brandenburger, and Dekel (1991).
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Figure 5: Example 4. The inequality out of each column/row of the table is the condition for the
action in this column/row to be the best response. The width of an arrow shows the length of the
transition vector, while the length of an arrow is normalized. The graphs (c)–(f) are obtained from
discrete-time finite-population simulations.

Thanks to continuity (Assumption 2) of the tempering function Q, the speed of transition
‖ẋ‖ changes continuously under the tBRD, while it does not udner the BRD, when the state
leaves an equilibrium. When the state escapes from a mixed equilibrium x∗ toward one of the
pure best responses, say action 1, the speed discontinuously grows from zero to ‖e1−x∗‖ � 0
under the BRD; on the other hand, it gradually increases from zero under the tBRD. In
particular, such a sudden change creates a difference between the BRD and the tBRD with
regard to strong Nash stationarity (part 3 of Theorem 1).

Because of its continuity and strong stationarity, the tBRD can be seen as a system of
piecewise differential equations (piecewise DEs), also known as a switched system in engi-
neering. In a system of piecewise DEs, the state space is partitioned into several almost
disjoint regions Xi where a single differential equation ẋ = Vi(x) with a continuous func-
tion Vi : Xi → TX governs the motion of the state. On a (measure-zero) intersection of
such regions, any convex combination of transition vectors that are feasible in the neighbor
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regions are allowed.29 A rest point can be on the intersection, but it must be stationary
in each differential equation. To investigate dynamic properties in a system of piecewise
DEs, we decompose the entire system to those of each differential equation and then impose
some additional conditions to mitigate discontinuity caused by switches between differential
equations.

Both under the BRD and under the tBRD, once we focus on (the interior of) a best
response region of a single action profile b ∈ A, we obtain a differential equation such as
ẋp = ep

bp−xp for the BRD and ẋp =
∑

a xp
aQ(F̆ p

a (xp))(ep
bp−ep

a) for the tBRD. In the former,
a mixed Nash equilibrium cannot be a rest point under the decomposed dynamic defined
on the single BR region. On the other hand, it is still a rest point under the decomposed
dynamic of the tBRD because xp

aQ(F̆ p
a (x)) = 0 for all a, p iff x is a Nash equilibrium. So

we can redefine the tBRD as a system of piecewise DEs such as

ẋp =
∑

ap∈Ap

xp
apQ(F p

bp(x)− F p
ap(x))(ep

bp − ep
ap) =: V p

Q(x;b) for all x ∈ b−1(b) (11)

for each b := (b1, · · · , bP ) ∈ A. Note that the tBRD allows the group of revising agents to
take any convex combination of pure best responses in a neighborhood of the current state.
To have the BR regions as almost disjoint regions, we assume the following:

Assumption 4. The best response correspondence b : X ⇒ A is single-valued almost
everywhere in X and every Nash equilibrium is isolated.

We can apply findings in the literature on piecewise DEs to the tBRD. Interestingly,
analysis of piecewise DEs was applied to economics in early 1980’s to study non-Walrasian
disequilibrium macroeconomic dynamics. Here we import some results from Honkapohja
and Ito (1983) to the tBRD.

Theorem 7. Consider a tBRD as a system of piecewise DEs (11). Assume Assumptions
1–4. Consider any b, c ∈ A whose BR regions have non-empty intersections, i.e. b−1(b) ∩
b−1(c) 6= ∅. Then, suppose that the following two conditions hold in b−1(b) ∩ b−1(c) for
some population p with bp 6= cp.

i) (a) The equation F p
bp(x)−F p

cp(x) = 0 is solvable for either one coordinate of x, and (b)
the solution is C2-class;

ii) (a) (DF p
bp(x)−DF p

cp(x))VQ(x;b) < 0 or (b) (DF p
bp(x)−DF p

cp(x))VQ(x; c) > 0.

Then, there exists a unique solution path from each point in X .

Proof. Note that the uniqueness of a solution path is guaranteed in the interior of each BR
region, where only one single differential equation governs the transition.

By Assumption 1 and 2, VQ(·;b′) is C1 with any b′ ∈ A. (i) suggests that the function
F p

bp − F p
cp separates b−1(b) and b−1(c): x belongs to the interior of b−1(b) if it is positive,

b−1(b)∩b−1(c) if zero, and the interior of b−1(c) if negative. Then, we can apply Honkapohja
and Ito (1983, Thm.2.1) to the uniqueness of a solution path under the tBRD around the
boundaries of the BR regions.

The above conditions are imposed for the uniqueness of the transition vector when the
state crosses the border of two regions. Condition ii) means that the state is pushed out
from one region to the other region; if both (ii-a) and (ii-b) are satisfied, the state is forced to
slide on the boundary. From Fig. 3 (b), we easily find Zeeman’s game (Example 3) satisfying
condition ii), as well as i) by the linearity of the payoff function and the non-singularity of
its payoff matrix. So we assure the uniqueness of the solution in this game.

29That is, Filippov solutions are usually adopted as the solution concept for a system of piecewise DEs.
Under the tBRD they coincide with Carathéodory solutions because of the upper semicontinuity and the
convexity of VQ, though this is not true in general.
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Furthermore, we can check local stability of an isolated equilibrium from the Hessian
matrices of neighbor DEs. Contrary to what might be expected, stability in each differ-
ential equation does not guarantee local stability in the whole system of piecewise DEs.
We need somewhat a stronger condition so that the dynamics in separate regions are well
coordinated.30

Theorem 8. Consider a tBRD as a system of piecewise DEs (11). Assume Assumptions
1–4. A Nash equilibrium x∗ is locally asymptotically stable if

z · {DVQ(x∗;b) + (DVQ(x∗;b))T }z < 0 for any z ∈ TX \ {0}

for each b ∈ b(x∗).

Proof. This is a straightforward application of Honkapohja and Ito (1983, Cor.2).

7 Concluding remarks

We defined the tempered best response dynamic by combining payoff-dependent revision
rates with inertia and myopic optimization. Payoff-dependent revision rates mitigate the
discontinuity of the standard best response protocol. Stability of Nash equilibrium in various
classes of games is robust to this modification. Similar to the replicator dynamic, the tBRD is
a payoff monotone selection. This property eliminates pathological multiplicity of solutions
and implausible cycles in Zeeman’s game (Example 3) and makes the long-run outcome more
consistent with the prediction from equilibrium refinement than under the BRD in a simple
sequential-move game (Example 4).

The speed of transition grows only continuously when the social state departs from an
equilibrium. A mixed Nash equilibrium is a rest point even in each best response region,
unlike under the standard BRD. This enables us to apply results on systems of piecewise
continuous differential equations to the tBRD. In this paper, we give sufficient conditions
for uniqueness of a solution path and for local stability of equilibrium. The latter allows
us to investigate stability by linearization. Among optimization-based dynamics, the logit
dynamic is conventionally used to analyze stability analytically, but its rest points are per-
turbed from Nash equilibria, depending on the noise level. Under the tBRD, rest points
coincide with Nash equilibria. The tBRD may be useful for applied theorists who want to
confirm dynamic stability of Nash equilibria without perturbation of rest points.

In a game with heterogeneous payoff types, the payoff dependency of revision rates in the
tBRD endogenously produces heterogeneity in revision rates among different payoff types.
Zusai (2012a) applies the tBRD to a binary Bayesian game with heterogeneous payoff types
and considers the implications for dynamic implementation of social optima.

A The proofs

A.1 Theorem 1 (Nash stationarity)

Proof. 1) Suppose x is a Nash equilibrium. Then for each p ∈ P, every action a ∈ Ap

satisfies xp
a(x) = 0 or F p

a (x) = F p
∗ (x). By Assumption 3, the latter implies Q(F̆ p

a (x)) = 0.
In both cases, (almost) every action-a player does not revise his action: xp

a(x)Q(F̆ p
a (x)) = 0.

So we obtain V (x) = {0} by (2).
2) Suppose x is not a Nash equilibrium. Then we can find at least one population p ∈ P

with a suboptimal action a ∈ Ap being played by a positive mass of its players xp
a > 0. Like

under the BRD, under the tBRD this mass decreases at the speed xp
aQ(F̆ p

a (x)) > 0. So any
transition vector ẋ ∈ V (x) has a negative entry ẋp

a(x) = −xp
aQ(F̆ p

a (x)) < 0 for this action.
Hence ẋ cannot be a zero vector, i.e. 0 /∈ V (x).

30See Honkapohja and Ito (1983) for a weaker sufficient condition for stability.
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3) First of all, Lipschitz continuity of F implies Lipschitz continuity of the revision
incentive F̆ p

a := F p
∗ −F p

a for any population p ∈ P and action a ∈ Ap. Let K̄p be the largest
Lipschitz constant of F̆ p

a among all a ∈ Ap:

|F̆ p
a (x1)− F̆ p

a (x2)| ≤ K̄p|x1 − x2| for all x1,x2 ∈ X .

Suppose there is a Carathéodory solution path staying at a Nash equilibrium x∗ until
time T ≥ 0 and leaving it at time T . Then by (2) and the triangle inequality we have

|ẋt| ≤
∑
a,p

xp,t
a |Q(F̆ p

a (xt))| · |yp,t
a − ep,t

a | with some yp,t
a ∈ Bp(xt) ⊂ ∆Ap

for almost all time t. First, consider any action a /∈ bp(x∗). Nash equilibrium requires xp,∗
a =

0 and continuity of Fp and the path xt implies F̆ p
a (xT+τ ) > 0 for sufficiently small τ . So in

the time range [T, T +τ ], such actions are not optimal and thus each keeps xp,t
a = 0. Second,

consider an action a ∈ bp(x∗). Then F p
∗ (x∗) = F p

a (x∗) and thus Q(F̆ p
a (x∗)) = Q(0) = 0 by

Assumption 3. With this fact, Lipschitz continuity of Q and F̆ p
a yields

|Q(F̆ p
a (xt))| = |Q(F̆ p

a (xt))−Q(F̆ p
a (x∗))|

≤ KQ|F̆ p
a (xt)− F̆ p

a (x∗)| ≤ KQ · 2K̄p|xt − x∗| for any a ∈ bp(x∗).

Hence in either case, we have

xp,t
a |Q(F̆ p

a (xt))| ≤ 2K̄pKQxp,t
a |xt − x∗| for any p ∈ P, a ∈ Ap and all t ∈ (T, T + τ ].

With |y·|, |e·| ≤ 1 and
∑

a xp,t
a = 1, this implies

|ẋt| ≤
∑
a,p

2K̄pKQxp,t
a |xt − x∗| · 2 ≤ KV |xt − x∗| for almost all t ∈ [T, T + τ ],

where KV = 4KQ

∑
a,p K̄p < ∞. Since xt is a Carathéodory solution and thus absolutely

continuous, we have

|xs − xT | =
∫ s

T

|ẋt|dt ≤ KV

∫ s

T

|xt − x∗|dt for almost all s ∈ [T, T + τ ].

Then Gronwall’s inequality implies

|xs − x∗| ≤ 0 · exp(KV s) = 0 for all s ∈ [T, T + τ ].

So we have xs = x∗ during s ∈ [T, T + τ ]. This contradicts the hypothesis that xt departs
from x∗ at time T . We therefore conclude that xt ≡ x∗ is the only Carathéodory solution
starting from x0 = x∗.

A.2 Theorem 2 (positive correlation)

Proof. 1) We begin the proof from the equality in 1). The vector zp ∈ V p(x) should be
represented as

zp =
∑

a∈Ap

xp
aQ(F̆ p

a (x))(yp
a − ep

a)

with a best response yp
a ∈ Bp(x). So we have

Fp(x) · zp = Fp(x) ·

[∑
a∈Ap

xp
aQ(F̆ p

a (x))(yp
a − ep

a)

]
=
∑

a∈Ap

xp
aQ(F̆ p

a (x)) {Fp(x) · yp
a − Fp(x) · ep

a}

=
∑

a∈Ap

xp
aQ(F̆ p

a (x))(F p
∗ (x)− F p

a (x)) =
∑

a∈Ap

xp
aQ(F̆ p

a (x))F̆ p
a (x)
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Since all terms in the last summation are non-negative, we have Fp(x) · zp ≥ 0.
2) It is clear that zp = 0 implies Fp(x) ·zp = 0, which is equivalent to the ‘only-if’ clause.

Next we prove the ‘if’ clause: suppose zp 6= 0. Then the term xp
aQ(F̆ p

a (x)) is positive for
some a ∈ Ap by (2). With Assumption 3, this implies F̆ p

a (x) > 0. Hence xp
aQ(F̆ p

a (x))F̆ p
a (x)

is positive for this a, and thus Fp(x) · zp > 0.
3) Notice that F(x) ·z =

∑
Fp(x) ·zp; so F(x) ·z > 0 iff Fp(x) ·zp > 0 in some population

p, and F(x) · z = 0 otherwise. We obtain 3) by combining 2) and weak Nash stationarity
(Theorem 1.1-2).

A.3 Theorem 4 (stability in stable games)

Here we prove the global asymptotic stability of Nash equilibria in stable games (Theorem
4) in three steps: First, we verify that the function L in (6) is Lipschitz continuous both
in state x and in time t. Second, we prove an auxiliary stability theorem for a Lyapunov
function of a differential inclusion. Then, we apply this theorem to our function L and
obtain the stability of Nash equilibria.

First, to prove the Lipschitz continuity of the function L in (6), we should notice that

L(x) =
∑
p∈P

max
b∈Ap

Lp
b(x)

where the function Lp
b : X → R is given by

Lp
b(x) :=

∑
a∈Ap

xp
a

∫ F p
b (x)−F p

a (x)

0

(F p
b (x)− F p

a (x)− q)Q′(q)dq

=
∑

a∈Ap\b

xp
a

[
Q(F p

b (x)− F p
a (x))(F p

b (x)− F p
a (x))−

∫ F p
b (x)−F p

a (x)

0

qQ′(q)dq

]

for each p ∈ P and b ∈ Ap. This relationship between L(x) and Lp
b(x) is obvious when we

interpret the tBRD as a standard BRD with a stochastic status-quo bias. For simplicity,
assume a single population and drop the superscript for population. Consider the players
who get a revision opportunity under the standard BRD. If they switch to action b, then the
total net increase of their payoffs is Lb(x). This is maximized if they take the best response
action b ∈ b(x) as it gives the largest payoff; L(x) is this maximized total net increase of
payoffs.

Under Assumption 2, Lp
b(x) is Lipschitz continuous in x ∈ X for each action b ∈ Ap. Thus

L(x) is also Lipschitz continuous in x ∈ X . Furthermore, Lp
b(xt) is Lipschitz continuous in

t ∈ [0,∞) on a Carathéodory (and thus Lipschitz continuous) solution {xt}. This implies
the same Lipschitz continuity of L(xt). Furthermore, it follows that

L̇(xt) =
∑
p∈P

L̇p
b(xt) for any b ∈ bp(xt) and almost all t ∈ [0,∞)

from a version of Danskin’s Envelope Theorem:

Theorem 9 (Hofbauer and Sandholm, 2009: Theorem A.4). For each element z in a set
Z, let gz : [0,∞) → R be Lipschitz continuous. Let

g∗(t) = max
z∈Z

gz(t) and Z∗(t) = arg max
z∈Z

gz(t).

Then g∗ : [0,∞) → R is Lipschitz continuous, and for almost all t ∈ [0,∞), we have that
ġ∗(t) = ġz(t) for each z ∈ Z∗(t).

Now based on this fact, we would proceed to prove that our L is a Lyapunov function
and guarantees the asymptotic stability of Nash equilibria. But as the tBRD is a differential
inclusion and not a differential equation, we need a DI version of the stability theorem of a
Lyapunov function:
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Theorem 10. Let A be a closed subset of a compact space X and A′ be a neighborhood of
A. Suppose two continuous functions W : X → R and W̃ : X → R satisfy (i) W (x) ≥ 0
and W̃ (x) ≥ 0 for all x ∈ X and (ii) W−1(0) = W̃−1(0) = A. In addition, assume W is
Lipschitz continuous in x ∈ X with Lipschitz constant K ∈ (0,∞). If any Carathéodory
solution {xt} starting from A′ satisfies

Ẇ (xt) ≤ −W̃ (xt) for almost all t ∈ [0,∞), (12)

then A is asymptotically stable and A′ is its basin of attraction.31

Proof. First of all, the fact that W (xt) is nonincreasing and the Lyapunov stability of A
follows from the fact that Ẇ (xt) ≤ −W̃ (xt) ≤ 0 for almost all t. The fact that W (xt) is
nonincreasing and property (i) of W (xt) jointly imply its convergence.

Now we want to prove that W (xt) can be less than any small positive number after a
sufficiently long time t. Suppose that there is a positive number l > 0 such that W (xt) ≥ l
for all t ≥ 0 on a Carathéodory solution {xt}.

Lipschitz continuity of W implies

d(x, A) := min
y∈A

|x− y| ≤ 0.5l/K ⇒ W (x) ≤ 0.5l < l.

Actually, this assumption implies the existence of y in the compact set A such that |x−y| ≤
0.5l/K; then it follows that W (x) = |W (x) −W (y)| ≤ K|x − y| ≤ 0.5l from the Lipschitz
continuity of W and properties (i,ii) of W .

So the Carathéodory solution should satisfy d(xt, A) > 0.5l/K. Consider a closed set Ǎ
defined as

Ǎ = {x ∈ X |d(x, A) ≥ 0.5l/K}.

Then the minimum of W̃ exists in this set Ǎ and

µ := min
x∈Ǎ

W̃ (x) > 0,

since Ǎ is a compact set and the minimizer belongs to Ǎ and thus not to A = W̃−1(0). As
xt ∈ Ǎ, we have −W̃ (xt) ≤ −µ. Hence (12) implies

W (xt)−W (x0) ≤ −
∫ t

0

W̃ (xs)ds ≤ −µt,

∴ W (xt) ≤ W (x0)− µt

for all t ∈ [0,∞). As µ > 0, this suggests that W (xt) < 0 for sufficiently large t > W (x0)/µ,
contradicting property (i) of W . Hence for any positive number l > 0, we can find a time T
such that we have W (xt) < l for all t ≥ T .

We therefore conclude that any Carathéodory solution {xt} starting from A′ satisfies

lim
t→∞

W (xt) = 0,

and converges to the set A = W−1(0).

Now we apply this theorem to prove the global asymptotic stability of Nash equilibria
in stable games from a Lyapunov function L.

31This is a modification of Smirnov (2001, Theorem 8.2), where A is a singleton consisting of a rest point
of a differential inclusion and an upper Dini derivative is used in place of the assumption that the Lyapunov
function W is Lipschitz continuous.
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Proof of Theorem 4. We show the function L is a strictly decreasing Lyapunov function with
L−1(0) = NE(F). First of all, since the integrand (F̆ p

a (x) − q)Q′(q) is non-negative on the
support of Q, the value of L is always non-negative. Besides, since the (first) integral is zero
if F p

∗ (x) = F p
a (x) and positive otherwise, we have L−1(0) = NE(F).

Consider an arbitrary Carathéodory solution {xt} starting from a point x0 ∈ X . For
almost all time, the solution is differentiable in time and the transition vector satisfies (2)
and the time derivative of L equals

∑
p L̇p

bp for any bp ∈ bp(x). Fix such a moment of time
t arbitrarily and henceforth drop the time index t. The transition vector ẋ satisfies32

ẋp =
∑

a∈Ap

xp
aQp

a(yp
a − ep

a) with some yp
a ∈ Bp(x) for each a ∈ Ap.

Since yp
ab > 0 only if b ∈ bp(x), Theorem 9 implies

Ḟ p
∗ =

∑
b∈Ap

yp
abḞ

p
b =

∑
b∈Ap

yp
abDF p

b ẋ = yp
a ·DFpẋ,

∴
d

dt
F̆ p

a = Ḟ p
∗ − Ḟ p

a = (yp
a − ep

a) ·DFpẋ.

The time derivative of L at this time t is thus

L̇ =
∑
p∈P

L̇p
b(xt) with any b ∈ bp(xt)

=
∑
p∈P

∑
a∈Ap

ẋp
a

∫ F̆ p
a

0

(F̆ p
a (x)− q)Q′(q)dq +

∑
p∈P

∑
a∈Ap

xp
aQp

a
′ d

dt
F̆ p

a

= −
∑
p∈P

∑
a∈Ap

xp
aQp

a

∫ F̆ p
a

0

(F̆ p
a − q)Q′(q)dq +

∑
p∈P

∑
a∈Ap

xp
aQp

a(yp
a − ep

a) ·DFpẋ

= −L̃ + ẋ ·DFẋ

≤ −L̃,

where

L̃ :=
∑
p∈P

∑
a∈Ap

xp
aQp

a

∫ F̆ p
a

0

(F̆ p
a − q)Q′(q)dq.

Notice that the last weak inequality comes from the definition of a stable game and 1·ẋp = 0.
Finally, the function L̃ is always non-negative for the same reason as L ≥ 0; in particular,

it is positive when x is not a Nash equilibrium, and zero when it is a Nash equilibrium. So
the function L is a strict Lyapunov function and satisfies the assumptions in Theorem 10.

We therefore conclude that L−1(0) = NE(F) is asymptotically stable in the whole state
space X .

A.4 Theorem 5 (stability of a regular ESS)

Lemma 1. Let x∗ ∈ X be a regular ESS. Then there is a neighborhood O ⊂ X of x∗ and a
constant C > 0 such that for each population p ∈ P

(i)
∑

b∈Up

ẋp
b = −Q̃p(x)

∑
b∈Up

x̃p
b , (ii) ẋp ·DFpẋp ≤ C

∑
b∈Up

x̃p
b

32Here we omit x from the arguments of functions on X or X p, and let Qp
a = Q(F̆ p

a (x)) and Qp
a
′

=

Q′(F̆ p
a (x)).
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Proof. First, since a regular ESS is a quasi-strict equilibrium, the support of x∗ coincides
with the set of the pure best responses b(x∗); namely, Up = Ap \ bp(x∗). Furthermore,
by continuity of Fp, there is a neighborhood Op of x∗ where any suboptimal action b ∈
Ap \ bp(x∗) = Up remains suboptimal and DFp is negative definite on TX ∩ RA

U . As the
dynamic of any suboptimal action b is ẋp

b = −Q(F̆ p
b (x))xp

b , we obtain∑
b∈Up

ẋp
b = −

∑
b∈Up

Q(F̆ p
b (x))xp

b = −Q̃p(x)
∑

b∈Up

x̃p
b . (13)

As the revision rate has an upper bound 1 by Assumption 2, Q̃p(x) is at most 1. Then
it follows that√∑

b∈Up

|ẋp
b | ≤

∑
b∈Up

|ẋp
b | = −

∑
b∈Up

ẋp
b = Q̃p(x)

∑
b∈Up

x̃p
b ≤

∑
b∈Up

x̃p
b .

According to Sandholm (2010a, pp.43-44), this and the local negative definiteness of DFp

jointly imply the existence of a positive constant Cp > 0 such that

ẋp ·DFpẋp ≤ Cp

√∑
b∈Up

|ẋp
b | ≤ Cp

∑
b∈Up

x̃p
b (14)

at any point in the neighborhood Op. Take the intersection of all Op (p ∈ P) as O and the
largest number of all Cp (p ∈ P) as C. Then (13) and (14) imply equations (i) and (ii).

We use this constant C to define the Lyapunov function L∗ for the regular ESS x∗ and
focus on this neighborhood O as the basin of attraction to x∗.

Proof of Theorem 5. From the calculation in the proof of Theorem 4, the time derivative of
the original Lyapunov function L is

L̇ = −L̃ +
∑
p∈P

Q̃pẋp ·DFpẋp.

Hence we have
L̇∗ = −L̃ +

∑
p∈P

Q̃pẋp ·DFpẋp + C
∑
p∈P

∑
b∈Up

ẋp
b .

Lemma 1 implies

L̇∗ = −L̃ +
∑
p∈P

Q̃p

(
ẋp ·DFpẋp − C

∑
b∈Up

x̃p
b

)
≤ −L̃

in the neighborhood O of x∗. Then, Theorem 10 guarantees the local asymptotic stability
of x∗.
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