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Abstract

Abstract: Between 1992 and 2009, 30 US states adopted laws mandating that health insurance
plans cover screenings for prostate cancer. Because prostate cancer screenings are used almost
exclusively by men over age 50, these mandates raise the cost of insuring older men relative
to other groups. This paper uses a triple-difference empirical strategy to take advantage of this
quasi-random natural experiment in raising the cost of employing older workers. Using IPUMS
data from the March Supplement of the Current Population Survey, this paper finds that the
increased cost of insuring older workers results in their receiving 2.8% lower hourly wages,
being 2% less likely to be employed, and being 0.7% less likely to have employer-sponsored
health insurance.
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1. Introduction

Prostate cancer mandates are state laws that require most private health insurance plans to
cover screening tests for prostate cancer. These mandates are now in place in 29 US states.
There has been a steady growth in the number of prostate cancer mandates since Delaware and
Georgia passed the first laws in 1992. This paper uses a difference-in-difference-in-difference
(henceforth triple difference or DDD) strategy to estimate the effects of these mandates on the
labor outcomes of older men. Prostate cancer screening is used exclusively by men, and almost
exclusively by men over age 50. Therefore, insurance companies and employers know that the
cost of this mandate will be generated by one easily identifiable subgroup, rather than by the
whole population, and they can be expected to frame their responses to the mandate accordingly.



Prostate cancer mandates provide a quasi-random natural experiment of increasing health
costs for employers. This gives an opportunity to study how workers and employers react to
the fact that older workers generally have higher health costs. Previous work has found that
the relatively poor health of older workers adversely affects their labor market outcomes both
directly (Bound et al. (1999)) and through increased health insurance costs paid by employers
(Scott et al. (1995)).

This paper uses 1990 to 2009 data on labor market outcomes and controls from the Integrated
Public Use Microdata Series compilation of the March Current Population Survey (IPUMS-
CPS), a dataset with approximately 200,000 individual-level observations per year. The par-
ticular labor market outcomes studied are employment, hourly wages, and whether or not an
individual has employer-provided health insurance. I find that labor markets react strongly to
the increased health costs of older workers, resulting in lower levels of money wages, employ-
ment, and employer-based health insurance among the older men that prostate cancer screening
mandates were intended to help.

Section 2 gives more information on prostate cancer mandates, health insurance mandates in
general, and the medical side of prostate cancer. Section 3 describes the data and the empirical
strategy of triple-difference estimation. Section 4 gives the econometric results and discusses
their robustness and implications. Section 5 concludes.

2. Background

2.1. Health Insurance Mandates

Health insurance mandates are common at the state level in the United States, and are ap-
plied to many benefits besides prostate cancer screening. Many other specific treatments or
conditions receive mandated coverage, from maternity care to infertility treatments to diabetes.
Laws mandating that health insurance cover specific treatments or conditions are known as bene-
fit mandates. Other types of mandates may require insurance to cover certain types of providers,
such as chiropractors, or certain types of beneficiaries, such as grandchildren. This paper follows
most academic work in focusing on benefit mandates, which are the most common type. Indus-
try organizations such as the Council for Affordable Health Insurance and the Blue Cross Blue
Shield Associations release annual reports tracking which mandates are in force in each state, the
most recent reports being Laudicina et al. (2011) and Bunce and Wieske (2011). The number of
mandates in force in the average state has greatly increased over the past 40 years. According to
the Council for Affordable Health Insurance, the average number of mandates in each state has
gone from 0 in 1960, to 17 in 1992, to 45 in 2011. Every year more mandates are passed, while
they are almost never repealed.

There has been a fair amount of academic work on health insurance mandates, which is
summarized in the survey articles by Jensen and Morrisey (1999) and Monheit and Rizzo (2007).
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One basic effect of mandates often predicted by these papers is an increase in overall insurance
premiums, as treatments that were formerly paid out-of-pocket are now paid using insurance,
while moral hazard increases total use of the service. Kowalski et al. (2008), LaPierre et al.
(2009), and Gohmann and McCrickard (2009) test this hypothesis in the market for individual
insurance. Kowalski et al. (2008) and Gohmann and McCrickard (2009) find that mandates tend
to cause statistically significant increases in premiums, while LaPierre et al. (2009) find they do
not. Gohmann and McCrickard (2009) and LaPierre et al. (2009) find large variations in the
effects of different mandates, with some causing large increases in premiums while others cause
premiums to decrease. Bailey (2013) tests the effect of mandates on premiums for employer-
based group health insurance (which represents the vast majority of the private insurance market),
finding that the average mandate causes a statistically significant increase in premiums of 0.44-
1.11%. Bunce and Wieske (2011) use actuarial data to estimate the cost of each mandate, finding
that some mandates lead to insurance cost increases of over 5%, while most mandates (including
prostate cancer screening) directly increase costs by less than 1%. It is important to keep in
mind, however, that each paper cited above estimates the effect of mandates on the premium for
an average person, rather than analyzing how mandates could have different costs for different
groups.

Most other academic work on mandates has examined their effects on the labor market, start-
ing with Summers (1989). If mandates result in higher insurance premiums, then employers who
offer health insurance may reconsider their compensation packages. They may stop offering
health insurance, change the composition of insurance plans, or reduce other forms of compen-
sation, such as wages. Gruber (1994b) found that unemployment did not rise after the passage
of five particularly costly mandates. He speculated that the mandates did not actually increase
the proportion of plans offering the mandated treatments, due to mandate exemptions and a high
proportion of plans already offering the treatments. Because of the Employee Retirement Income
Security Act of 1974 (ERISA), state mandates do not apply to self-insured firms, which cover
about half of all workers.

Kaestner and Simon (2002) also found that the average mandate does not have a statistically
significant effect on labor market outcomes for the average person. Van der Goes et al. (2011),
by contrast, found that the average mandate reduces the chance that an individual has employer-
provided health insurance by 0.2%, and Jensen and Gabel (1992) found that mandates are a
major reason that some firms do not offer health insurance. Buchmueller et al. (2011) found
that a mandate for employers to offer insurance to full-time workers did not affect wages but did
cause employers to hire more mandate-exempt part-time workers. Cseh (2008) found no labor
market consequences for mental health parity mandates, which are targeted at a particular group
but not one identifiable to employers. Meer and West (2011) argue that those looking for labor
market effects of mandates on subgroups like small businesses suffer from small sample bias,
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even in large datasets like the CPS, leading to high standard errors. In summary, there is mixed
evidence that the average health insurance benefit mandate has significant effects for the average
person.

The evidence that mandates affect specific identifiable groups is much stronger. Gruber
(1994a) found that the cost of mandated maternity care benefits was passed on in its entirety
in the form of lower wages for women aged 20-40. Lahey (2012) found that infertility treatment
mandates resulted in lower wages and labor supply for women aged 28-42. The cost of a man-
date may be too small to notice if it is spread out over all insured people, but it can be significant
if it is passed on to one relatively small and identifiable demographic group.

2.2. Prostate Cancer Screening

The basic facts about prostate cancer are well-summarized by the most recent report of the
United States Preventative Services Task Force (USPSTF), an independent expert body within
the Agency for Health Care Research and Quality. They state that

“Prostate cancer is the most commonly diagnosed non-skin cancer in men in the
United States, with a lifetime risk for diagnosis currently estimated at 15.9%. Most
cases of prostate cancer have a good prognosis, even without treatment, but some
are aggressive; the lifetime risk of dying of prostate cancer is 2.8%. Prostate cancer
is rare before age 50 years and very few men die of prostate cancer before age 60
years. Seventy percent of deaths due to prostate cancer occur after age 75 years.”

The most common screening test is the Prostate-Specific Antigen (PSA) test, which tests blood
serum. Digital Rectal Examinations (DRE) are also sometimes employed. The USPSTF gives
the PSA test a grade D recommendation, meaning they recommend against it. Their methodology
considers only medical harms and benefits, not financial costs. According to USPSTF (2012),
“There is adequate evidence that the benefit of PSA screening and early treatment ranges from
0 to 1 prostate cancer deaths avoided per 1000 men screened... no study found a difference
in overall or all-cause mortality.” This possible benefit is weighed against the potential harm
incurred from screening and treatment. Surgery and radiation used to treat prostate cancer cause
enough morbidity and mortality that the USPSTF finds that “there is convincing evidence that
PSA-based screening for prostate cancer results in considerable overtreatment and its associated
harms.”

It is an odd and concerning fact that people in the United States spend so many resources
on, and in fact mandate insurance coverage for, medical care that may bring no net benefit. The
argument of this paper, however, does not rely on the still-debated claim that prostate cancer
screening has no net medical benefit. The econometric strategy used to test the labor market
effect of these mandates depends on two facts about prostate cancer screening. One is that it is
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primarily used by one demographic group, men over age 50. This point should be beyond dis-
pute: prostate cancer affects only men, the vast majority of prostate cancer diagnoses and deaths
are in men over age 50, and even the more pro-PSA-testing guidelines from the American Cancer
Society recommend possible screening only for men over age 50. The other fact about prostate
cancer screening necessary for this paper’s argument is that screening is expensive enough for
insurers and employers to notice and care about.

This may not be so obvious, since the PSA test is simple blood work, and Medicare only
pays about $30 per test. However, the test can lead to additional treatments that would not have
occured otherwise. According to USPSTF (2012), “Over 10 years, approximately 15% to 20%
of men will have a PSA test result that triggers a biopsy.” Mitchell (2012) finds that in 2005
Medicare paid approximately $900 per prostate biopsy (including pathology lab services). This
screening also leads to prostate cancer being treated earlier and more often; according to USP-
STF (2012), “From 1986 through 2005, PSA-based screening likely resulted in approximately 1
million additional U.S. men being treated with surgery, radiation therapy, or both compared with
the time before the test was introduced”. This makes for an additional 50,000 cases of prostate
cancer being treated every year. According to Jacobs et al. (2012), about 200,000 men are diag-
nosed with prostate cancer every year in the US, making screening-induced treatments 1/4 of the
total.

According to Surveillance Epidemiology and End Results (SEER) data summarized by Howlader
et al. (2013) the 50-64 age group accounts for 40% of prostate cancer diagnoses. Assuming that
the age of the screening-induced cases matches that of the general prostate cancer population,
this means 20,000 men age 50-64 are diagnosed with prostate cancer annually as a result of PSA
screening. Because prostate cancer is so slow-growing, men commonly have the disease for
decades before dying of another cause. From the perspective of an employer, screening may re-
sult in payments for surgery or radiation treatment now that otherwise would have been put off for
years, often past retirement. Roehrig et al. (2009) estimate that in 2005, medical total spending
related to prostate cancer treatment was $6.8 billion, or $34,000 per new prostate cancer patient.
Each year PSA testing leads to 20,000 addition prostate cancer diagnoses among men aged 50-
64; this represents 0.1% of the age group, making for an expected cost of $34000*0.001=$34.
Even combined with the costs of biopsies and and PSA tests, expenditures on prostate cancer are
relative low.

This suggests that the direct monetary costs of prostate cancer may be dominated by lost
time: absences due to attending screening and treatment, or early retirements due to receiving a
cancer diagnosis.

2.3. Prostate Cancer Mandates

Figure 1 shows when each state passed its prostate cancer mandate; blank states have not
passed any prostate cancer mandate as of 2013. Figure 2 shows the number of US states with
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Figure 1: Date of Prostate Cancer Screening Mandate Passage in Each State

prostate cancer mandates in force over time. The steady upward trend is clear, with rapid growth
in the mid-1990s. There is some variation in the specific language used in each state’s mandate
law. Most states mandate coverage for men over age 50 and for men over age 40 who are in high-
risk categories, while some simply mandate coverage for everyone. Many states specifically
mention that they are mandating the Prostate-Specific Antigen test, some specify this as well
as another test, and some do not specify the screening technique. Given that prostate cancer
screening is mainly sought by men over age 50 in any case, this variation in state laws does not
seem to be enough to require different codings of the mandate variable in the main regressions.

3. Data and Identification Strategy

3.1. Data Sources

Data on the passage of mandates was gathered from several sources. The Blue Cross Blue
Shield Association releases an annual report, “State Legislative Healthcare and Insurance Issues,”
which includes information on which health insurance benefit mandates are in force in each
state. The National Council of State Legislatures maintains a database of states that have passed
prostate cancer screening mandates, with a description of the specific components of each state
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Figure 2: Number of States with Prostate Cancer Mandates by Year

law. The initial coding of the dummy variable for the passage of mandates was based on these
two sources. When the BCBSA and NCSL were in conflict, Lexis Nexis was used to find the
actual text of the state law and determine how to code the state.

All other data is from the Integrated Public Use Microdata Series release of the March Current
Population Survey, compiled by King et al. (2010). There are 3.5 million observations covering
every state and the District of Columbia from 1990 to 2009. Of these, 99,862 observations cover
individuals most affected by the mandates (men between 50 and 64 years of age who live in
states and years where a mandate is in effect). All three dependent variables are from IPUMS:
employment, hourly wages, and a dummy for whether individuals have employer-provided health
insurance. The health insurance and employment variables come directly from IPUMS. Hourly
wages are imputed from other IPUMS variables by dividing total annual income by hours worked
per week and weeks worked per year, and adjusting for inflation using the Consumer Price Index.
Wage and health insurance regressions drop the self-employed and those with no income. The
natural log of hourly wages is used for the regressions so that the coefficients can be interpreted
as percentage changes.

Control variables include dummies for individual’s age (ageDum36i−ageDum64i), race (whitei

and blacki), ethnicity (hispanici), education (HighSchoolGradi and CollegeGradi), and marital
status (marriedi). The hourly wage and employer-based insurance regressions also control for
job characteristics: the size of the firm (SmallFirmi and MidFirmi) and whether the worker is
in a union (unioni). The independent variables of interest for triple-difference regression are
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dummy variables generated from the IPUMS data: these include a dummy for whether an in-
dividual is male (Malei), a dummy for whether he is over age 50 (AgeGroupi), and a dummy
for whether his state has a prostate cancer mandate in effect (Mandatest ). The way that these
variables and the interactions between them are used for triple-difference regression is explained
in the next section.

3.2. Triple-Difference Estimation

The primary treatment group for prostate cancer screening mandates is men over age 50 in
states that have passed mandates. In a DDD regression the control groups are represented by
double interaction terms such as Malei ∗AgeGroupi, and the treatment group of men over age
50 in states with mandates is represented by the triple interaction term Mandatest ∗AgeGroupi ∗
Malei. The treatment effect estimated is simply the coefficient of the triple interaction term.

The basic DDD regression equation is given by:

Yit = β1Mandatest ∗AgeGroupi ∗Malei +β2Mandatest ∗Malei

+ β3Mandatest ∗AgeGroupi +β4Malei ∗AgeGroupi +β5Mandatest

+ β6Malei +β7AgeGroupi +β8Xi +θt +σs + εsti

Where Yit is a variable measuring the outcomes of individual workers. Three different de-
pendent variables Yit are used in separate regressions: the natural log of hourly wages, a dummy
indicating whether the individual is employed, and a dummy indicating whether the individual
has employer-sponsored health insurance. The subscript i refers to individuals, s refers to states,
and t refers to years. Mandatest is a dummy variable that is equal to 1 in states and years where
mandates are in force and equal to 0 otherwise. AgeGroupi is a dummy variable set to 1 for
individuals between 50 and 64 years old, and Malei is a dummy set to 1 for men. Xi is a vector of
control variables that can be observed for individuals. These controls include measures of age,
race, ethnicity, education, and marital status. Controls in the wage and insurance regressions also
include firm characteristics. θt indicates fixed effects for each year, and σs indicates fixed effects
for each state. The coefficient β1 gives the DDD estimate of the treatment effect, the change in
the dependent variable for men over age 50 in states with mandates.

4. Results

Table 1 shows the results of the three main triple-difference regressions. Male∗AgeGroup∗
Mandate is the estimate of the treatment effect on the main treatment group. Its coefficients rep-
resent the effect of mandates on the hourly wages, employment, and chance of having employer-
provided health insurance for men aged 50 to 64. Each coefficient can be interpreted as a per-
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ln(HourlyWage) Employed Employer Insures
Male∗AgeGroup∗Mandate -0.028*** -0.020*** -0.007***

(0.010) (0.006) (0.003)
Male∗AgeGroup 0.055*** -0.030*** 0.011***

(0.005) (0.004) (0.002)
Male∗Mandate -0.018** 0.013* -0.002

(0.006) (0.007) (0.002)
AgeGroup∗Mandate -0.001 0.021*** 0.013***

(0.007) (0.004) (0.002)
Mandate 0.013 -0.007* -0.007**

(0.0121) (0.004) (0.003)
AgeGroup 0.225*** -0.313*** -0.053***

(0.019) (0.005) (0.005)
Male 0.271*** 0.131*** 0.015***

(0.007) (0.004) (0.002)
State Fixed Effects yes yes yes
Year Fixed Effects yes yes yes

Observations 803,409 1,299,581 605,585

Table 1: Basic Estimates of the Effect of Prostate Cancer Screening Mandates on labor Market Outcomes
*Indicates p-values less than 0.10 **Indicates p-values less than 0.05 ***Indicates p-values less
than 0.01; Values in parentheses are robust standard errors clustered by state. The coefficients for
ln(Hourly Wage) are the results of an Ordinary Least Squares regression. The numbers reported
for Employment and Employer Insurance are the marginal effects from a Logit regression, since
the dependent variables are binary. Coefficients of demographic control variables are not shown
(these include measures of age, race, ethnicity, education, and marital status for all regressions,
as well as firm size and union membership in the wage and insurance regressions). The sample
used is Americans aged 35-64. Person-level probability weights were used in all regressions to
account for sampling bias.

centage change; for instance, the -0.028 coefficient for log wages can be interpreted as mandates
causing a 2.8% reduction in the hourly wages of men over age 50.

The triple-difference regression estimates for the effect of prostate cancer mandates on the
labor market outcomes of older men, therefore, are as follows: after the passage of a prostate
cancer mandate, hourly wages decrease 2.8%, employment decreases 2.0%, and the chance of
having employer-provided health insurance decreases 0.7%. Each result is significant at the 1%
level. By contrast, the coefficient Mandatest gives an estimate of the effect of mandates on the
general population. This effect is estimated to be much smaller and less significant.

Only data on individuals aged 35-64 was used in these regressions. Workers under 35 may not
be a close control group for those over fifty, differing in unobserved ways. Individuals over age 64
have access to Medicare, so changes in the private insurance market will have a less clear effect
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on them. However, a robustness check described in section 4.2 shows that the results remain
significant with various specifications of age. Self-employed workers are not included in the
wage and insurance regressions. The data used begins in 1990, two years before the first mandate
was passed, and extends to 2009, the year the most recent mandate was passed. Probability
weights are used to reflect the likelihood that each individual was sampled, as is standard in
research using survey data. State and year fixed effects were included in each regression to
control for the possibility of labor market shocks specific to any state or year.

4.1. Discussion and Welfare Analysis

Gruber (1992) developed a framework for the welfare analysis of a mandated benefit, which
he applied to find that women put a value on maternity care coverage equal to its cost, a frame-
work also used by Lahey (2012). Figure 3 demonstrates the idea. Mandates raise the total cost of
compensating workers by C. The demand curve in terms of money wages for workers affected
by the mandate will shift left by C, as in the case of a tax. This results in wages falling to W2. If
workers place no value on the mandate, then their labor supply curve remains the same, so the re-
duction in demand leads to employment falling to L2. If instead workers value the mandate fully,
their supply curve shifts right by the cost of the mandate C, balancing the shift in demand. This
results in money wages falling to W ′2, but hours worked remaining steady. If workers value the
mandate at cost then welfare is unchanged from before the mandate. If workers value the man-
date below its cost C, welfare is reduced. The mandate functions like a tax equal to (1−α)∗C,
where α is the worker’s valuation of the mandate divided by its cost to employers. The left half
of figure 3 represents the special case α = 0, while the right half represents the special case
where α = 1.

With this theoretical framework in mind, the first question the empirical work answers is
whether the mandate is large and binding enough to noticeably raise compensation costs, and so
shift demand and lower money wages. This paper found that this is indeed the case for prostate
cancer screening mandates, which lower the wages of men over age 50 by 2.8%. The second
question the empirical work can answer is how workers value the mandate and so what happens
to welfare. If they value the mandate at its cost, then they perceive no change in the value of
their compensation, only in how it is composed (more in health benefits and less in wages).
However, if the workers value the mandated benefit at less than its cost, then the value of their
total compensation has decreased (they lose more in wages than they gain in health benefits), and
their hours worked and welfare decrease as a result.

The fact that there was a 2% decrease in the employment of men over age 50 after the pas-
sage of a mandate shows that workers do not value prostate cancer screening mandates at cost,
and that welfare was reduced in their labor market. This, along with the significant reduction in
employer-based health insurance coverage after a mandate, suggests that prostate cancer screen-
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Figure 3: Labor Market Effects of Mandates with No Valuation vs Full Valuation

ing mandates are probably a poor policy, one which ends up hurting the very group it was in-
tended to help.

However, there are two ways in which mandates could have better effects than these results
seem to suggest. First, it is possible that men are incorrect to place such a low value on prostate
cancer screening, and that the mandate actually improves their health enough to make them better
off. But the medical research discussed in section 2 suggests otherwise: that men are probably
correct in the low valuation they assign to screening. The mandates actually provide an excellent
opportunity to study the disputed health effects of a marginal increase in screening; that question,
however, is beyond the scope of this paper.

There is a second reason the broader welfare effects of the mandate may not be as bad as
they may first appear, given the 2% drop in employment and the decrease in employer health
insurance for men over age 50. The older men’s jobs do not simply disappear; rather, so long
as they are substitutes for other kinds of workers rather than complements, their place is taken
by women and younger men. This paper found no significant effect of prostate cancer screening
mandates on overall wages and employment for all workers (as measured by the coefficient of
Mandatest ), suggesting that men over 50 are in fact close substitutes for women and younger
men.

The fact that other workers are substitutes for older men also helps to explain why the esti-
mated effects of the mandate are so large. Difference-in-difference estimation does not measure
the absolute change in the wages and employment of older men but rather the change relative
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to the comparison groups, the women and younger men whose wages and employment may in-
crease following the mandate. The bulk of any negative welfare effect, then, likely comes from
the decrease in the perceived value of compensation for the older men who kept their jobs, and
from employers paying to make the transition to younger workers and women.

Further work using difference-in-difference estimation to study group-specific mandates must
keep the possibility of complementary workers in mind. A paper could find no employment ef-
fect of mandates on the targeted group (as in Gruber (1994a)) either because there is no such
effect, or because it is having an almost equal negative effect on the targeted workers and the
complementary workers in the comparison group.

4.2. Robustness

4.2.1. Comparison Group

This paper’s triple-difference analysis has compared men aged 50-64 to women aged 50-64
and to men aged 35-49. It is possible that the results are sensitive to the choice of comparison
group. Age 65 was chosen as an upper bound because it is the age when eligibility for Medicare
begins, and age 35 was chosen as a lower bound because it provides an age group spanning 15
years to mirror those 50-64. However, it is possible that younger people or people with Medicare
actually are appropriate comparison groups. Alternatively, it is possible that the original analysis
used too broad a range of ages to provide good control groups. A sensitivity analysis of the ages
included is shown in Table 2. The estimated magnitudes of the coefficients experience moderate
changes as new age groups are added or removed, but in each specification the effect of mandates
on the labor market outcomes of older men remains significant. This suggests that the results are
robust to various choices of comparison group.

4.2.2. Serial Correlation

Bertrand et al. (2004) describe how difference-in-difference estimation can lead to statis-
tically significant results much more often than is appropriate due to failures to account for
autocorrelation. In fact, they find that uncorrected autocorrelation in difference-in-difference
estimation can lead to false positives in as many as 62.5% of regressions. The critiques raised
by Bertrand et al. (2004) are highly relevant to this analysis, since their focus was on other
papers which also use DD techniques on Current Population Survey data covering many time
periods. In response, this paper has already taken several steps to avoid the pitfalls described
by Bertrand et al. (2004). First and most obviously, this paper uses triple-difference rather than
double-difference estimation, and so has several close control groups. Second, clustered stan-
dard errors were used to account for serial correlation of outcomes within states. Bertrand et al.
(2004) found that using standard errors clustered on states (and therefore allowing an arbitrary
variance-covariance matrix) reduces the proportion of false positive findings of significance to
only 1.3%. By using robust standard errors clustered on states, therefore, this paper deals with
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Table 2: Estimated Effect of Mandates on Older Men when Various Age Groups are Used
ln(HourlyWage) Employed Employer Insures

Ages 35-49, 50-64 -0.028*** -0.020*** -0.007***
(0.010) (0.006) (0.003)

Ages 25-49, 50-64 -.036*** -.015*** -.009***
(0.010) (0.006) (0.003)

Ages 40-49, 50-62 -.024*** -.020*** -.007*
(0.008) (0.005) (0.004)

Ages 18-49, 50 and up -.037*** -.011** -.010***
(0.011) (0.005) (0.003)

*Indicates p-values less than 0.10 **Indicates p-values less than 0.05 ***Indicates p-values less
than 0.01; Values in parentheses are robust standard errors clustered by state. The coefficients for
ln(Hourly Wage) are the results of an Ordinary Least Squares regression. The numbers reported
for Employment and Employer Insurance are the marginal effects from a Logit regression, since
the dependent variables are binary. Coefficients of control variables (including demographic
controls, state and year fixed effects, and the terms needed for triple differencing) are not shown.
Person-level probability weights were used in all regressions to account for sampling bias.

the Bertrand et al. (2004) critique of difference-in-difference work and drastically reduces the
probability that the significance of the results is merely due to chance.

4.2.3. Endogeneity

Table 3: Summary Statistics in 1990 for States Eventually Passing or Not Passing Mandate
States with Mandate States without Mandate
(29 States and DC) (21 states)

Mean Age 34.1 35.1
Age 50-65 13.0% 13.7%

Male 48.7% 48.6%
Mean Hourly Wage $9.77 $9.56

Mean Income $18,014 $16,959
Employer Insures 82.4% 80.5%

Survey probability weights were used in calculations of means to account for sampling bias.
Top-coded incomes were omitted in the calculation of mean income. Dollars are 1990 values
unadjusted for inflation.

Another possible concern is with endogeneity. The estimation strategy of this paper effec-
tively assumes that mandates were passed randomly. The estimates would be biased if the pas-
sage of mandates is in fact caused by the differences in the proportion of men over age 50 or
in labor market outcomes across states. A simple, informal test of endogeneity is to look for
systematic differences in demographics between states with and without mandates. The results
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of this comparison are shown in Table 3.
Overall, there seem to be small differences between the states that passed mandates and

those that did not. States that passed mandates had a 1.9% higher rate of employer-based health
insurance, which could indicate that more people in those states would benefit from a mandate.
There is also a small difference in age between mandate and non-mandate states. However, the
difference is in the opposite direction that one would expect if more people in the relevant interest
groups lead states to pass mandates. States with prostate cancer mandates (which are intended to
primarily benefit men over age 50) actually had a younger average population and fewer men age
50-65 as of 1990. It does not seem that demographic differences between states are large enough
to cause major differences in the likelihood that a state would adopt a mandate. This informal
comparison casts doubt on the possibility that endogeneity could be a major source of bias.

ln(HourlyWage) Employed Employer Insures
Male∗AgeGroup∗Mandate -.028** -.020*** -.007***

(0.010) (0.006) (0.003)
Male∗AgeGroup .055*** -.030*** .011***

(0.005) (0.004) (0.002)
Male∗Mandate -.018*** .012* -.002

(0.006) (0.007) (0.003)
AgeGroup∗Mandate .001 .021*** .013***

(0.007) (0.004) (0.002)
Mandate .015** -.007 -.006**

(0.007) (0.005) (0.003)
AgeGroup 0.225*** -.313*** -.053***

(0.019) (0.005) (0.005)
Male .271*** .131*** .015***

(0.007) (0.004) (0.002)
State Fixed Effects yes yes yes
Year Fixed Effects yes yes yes

State-Specific Time Trends yes yes yes
Observations 803,409 1,299,581 605,585

Table 4: Results with State-Specific Time Trends
*Indicates p-values less than 0.10 **Indicates p-values less than 0.05 ***Indicates p-values less
than 0.01; Values in parentheses are robust standard errors clustered by state. The coefficients for
ln(Hourly Wage) are the results of an Ordinary Least Squares regression. The numbers reported
for Employment and Employer Insurance are the marginal effects from a Logit regression, since
the dependent variables are binary. Coefficients of demographic control variables are not shown
(these include measures of age, race, ethnicity, education, and marital status for all regressions,
as well as firm size and union membership in the wage and insurance regressions). The sample
used is Americans aged 35-64. Person-level probability weights were used in all regressions to
account for sampling bias.

14



A slightly more formal method of assessing endogeneity is to include state-specific time
trends in the main regressions, in addition to the state and year fixed effects already included.
This allows for the fact that states may have already had a certain trend in wages, employment
and employer-based health insurance before the passage of a mandate. Controlling for state-
specific time trends should prevent the estimation from attributing to mandates what was really
a pre-existing trend. The results of this exercise are shown in Table 4. The inclusion of state-
specific time trends causes only very slight changes to the magnitude and significance of the
coefficients.

Another way of investigating the potential endogeneity problem is to examine the leading
and lagged effects of the mandate laws, as Autor (2003) did for unjust dismissal laws. Angrist
and Pischke (2009) describe how to perform a kind of Granger test on a difference-in-difference
specification. If the mandates are estimated to cause significant changes before they are actu-
ally adopted, it would suggest that the results found in this paper are simple pre-trends falsely
attributed to the mandates. In general we expect causes to happen before effects, though it is pos-
sible that employers could respond today to prepare for a law they expect to be passed next year.
Table 5 shows the estimated effects of mandates in the years before and after they are passed.

This test shows no significant evidence of a pre-trend where effects occur before their sup-
posed cause, suggesting that there is no endogeneity problem nor any reaction in anticipation
of the passage of a mandate. The test also shows that mandates have both an immediate and
a persistent effect on employment. The estimated effect of the mandate on men over age 50 is
significant in each year, and has a magnitude very close to the original estimate in the main spec-
ification. The test shows only a delayed effect on wages and insurance though, suggesting that
they are somewhat sticky. The mandate has no significant effect on wages in the year it is passed
or in the two years afterward, but does have a significant effect in the third and all subsequent
years.
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Table 5: Leads and Lags Test
ln(HourlyWage) Employed Employer Insures

Male∗Age∗Mandatet−2 .005 .009* .007**
(0.017) (0.005) (0.004)

Male∗Age∗Mandatet−1 .007 .010 .006
(0.017) (0.010) (0.006)

Male∗Age∗Mandatet .012 -.019** -.006
(0.017) (0.007) (0.006)

Male∗Age∗Mandatet+1 .018 -.016** -.007
(0.017) (0.008) (0.006)

Male∗Age∗Mandatet+2 -.008 -.021*** -.011**
(0.019) (0.007) (0.005)

Male∗Age∗Mandatet+3 f orward -.037*** -.019*** -.005**
(0.011) (0.006) (0.003)

*Indicates p-values less than 0.10 **Indicates p-values less than 0.05 ***Indicates p-values less
than 0.01; Values in parentheses are robust standard errors clustered by state. Law change dum-
mies Male∗Age∗Mandate from t−2 to t +2 are equal to one for only one year each, but t +3
is equal to one in every year beginning with the third year after adoption. The coefficients for
ln(Hourly Wage) are the results of an Ordinary Least Squares regression. The numbers reported
for Employment and Employer Insurance are the marginal effects from a Logit regression, since
the dependent variables are binary. Coefficients of control variables (including demographic
controls, state and year fixed effects, and the terms needed for triple differencing) are not shown.
Person-level probability weights were used in all regressions to account for sampling bias.

5. Conclusion

I find that prostate cancer mandates lead to statistically and economically significant declines
in employment, wages, and insurance coverage for men over age 50. One lesson to take from
this is that there are costs to health insurance benefit mandates, and that sometimes these costs
fall precisely on those whom the mandate is intended to help. If mandated benefits increase costs
to employers, they respond quickly by reducing other parts of the compensation package and
substituting to mandate-exempt workers. A broader point is that prostate cancer mandates are
one more example of labor market distortions caused by employer-provided health insurance.
If health care were provided primarily through individual insurance, whether public or private,
then mandates may result in inefficiently high medical spending but would not distort labor
markets. But in the current US employer-based system, mandates may still lead to inefficiently
high medical spending while also distorting labor markets. This paper demonstrates how prostate
cancer mandates can distort the labor market for men over age 50. Prostate cancer treatment is
only a small fraction of all medical care, but it demonstrates a general trend wherein employers
are pushed away from any person or group predicted to have high health costs.
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