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Abstract

We consider general evolutionary dynamics under idiosyncratic but persistent payoff het-
erogeneity and study the dynamic relation between the strategy composition over different
payoff types and the aggregate strategy distribution of the entire population. It is rigorously
proven that continuity of the switching rate function or the type distribution guarantees the
existence of a unique trajectory. In major evolutionary dynamics except the standard best re-
sponse dynamic, an agent’s switching rate from the current action to a new action increases
with the payoff gain from this switch. This payoff sensitivity makes a heterogeneous dynamic
nonaggregable: the transition of the aggregate strategy generically depends not only on the
current aggregate strategy but also on the current strategy composition. However, if we look
at the strategy composition, stationarity of equilibrium in general and stability in potential
games hold under any admissible dynamics. In particular, local stability of each individual
equilibrium composition under an admissible dynamic is equivalent to that of the correspond-
ing aggregate equilibrium in the aggregate dynamic induced from the standard best response
dynamic, though the basin of attraction may differ over different dynamics.
Keywords: evolutionary dynamics, payoff heterogeneity, aggregation, continuous space, poten-
tial games
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1 Introduction

In a population game, a population of (infinitely or finitely many) agents plays a game; each agent
takes the role of a ”player” in a normal form of the game. While it is commonly assumed that the
agents in the population are homogeneous,1 there are a few studies that bring payoff heterogene-
ity into the game and discuss the relation between aggregation and dynamics: Blonski (1999) and
Ely and Sandholm (2005). But, these studies rely on the aggregability of the dynamic—the change
in the aggregate strategy distribution is wholly determined from the current state of the aggregate
distribution alone, independent of the underlying correlation between strategy choices and payoff
types. Such aggregability may be assumed as in Blonski (1999) or may be derived from some spe-
cific form of the agents’ strategy revision processes as in Ely and Sandholm (2005). In this paper,
we consider a general class of evolutionary dynamics in the heterogeneous setting without requir-
ing aggregability. The ultimate goal of this paper is to provide a foundation for nonaggregable
dynamics that would better capture the dynamic relations between heterogeneous microscopic
behavior and the macroscopic aggregate state beyond the representative agent approach.

Aggregation in evolutionary dynamics. Generally, in an evolutionary dynamic, an agent occa-
sionally switches its action. The switching decision of an agent is supposed to follow a switching
rate function (revision protocol), which determines the switching rate from one action to another
based on the payoff vector and (possibly, but not necessarily) the action distribution over the ob-
served population of other agents. The population dynamic is obtained by summing the switching
processes of individual agents.

In a heterogeneous setting, there are two layers to describe the distribution of actions over
the heterogeneous population. Strategy composition is the joint distribution of actions and types,
while the aggregate strategy is its marginal distribution of actions, i.e., the distribution of actions
collected over all the agents regardless of their types. We consider aggregate games with payoff
heterogeneity: the payoff of an action for each agent not only changes with aggregate strategy
but also differs depending on the type of agent. If the choice of a new action is solely based on
the payoffs and not on the other agents’ action distribution as in the best response dynamic and
payoff comparison dynamics, an individual agent’s switching rate is completely determined in an
aggregate game only from the aggregate strategy and the agent’s own type without identifying
the strategy composition.

However, different types of agents may have different switching rates. The population dy-
namic is driven by switching agents. Thus, to pin down the population dynamic, we need to
identify which agents are more likely to switch actions, namely, which agents have greater switch-

1Of course, it is very common in evolutionary game theory to have multiple populations, each of which represents a
different player in the normal form and consists of homogeneous agents. Our theorems on the stationarity and stability
of equilibrium composition can be seen as an extension of the stationarity and stability of a Nash equilibrium in finitely
many populations to (potentially) continuously many populations; however, our extension comes straight from those
properties in a single population setting. After all, our motivation and the central issue in this paper is the relationship
between aggregation and dynamics.
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ing rates. The transition of the aggregate strategy is more dictated by the switches of those agents.
For example, suppose that the population is divided into two groups of agents with equal masses;
switching rates for agents of one group are much greater than those for the other group, which
are relatively close to zero. Then, the transition of the aggregate strategy is determined mostly
from the transition of the latter group’s action distribution, as illustrated in Figure 1. When the
switching rate depends on the payoff gain from the switch as in most evolutionary dynamics, this
identification problem reduces to the identification of which agents face greater payoff gains from
switches. Under payoff heterogeneity, the payoff gains for agents vary not only with their current
actions but also with their types. Therefore, the transition of the aggregate strategy generally de-
pends not only on the distribution of current actions alone, i.e., the current aggregate strategy, but
also on the joint distribution of types and actions, i.e., the strategy composition.

Aggregable dynamics. Ely and Sandholm (2005) consider the standard best response dynamic
(BRD) in a population of heterogeneous agents. In their heterogeneous standard BRD,2 every switch-
ing agent chooses the best response action that currently yields the greatest payoff for the agent,
and the switching rate to the best response action is constant and common for all agents. Agents
may currently take different actions and face different amounts of payoff gains from switches; ev-
ery agent will switch to the best response action for its own type at the constant and common rate.
Thus, the transition of the aggregate strategy is determined solely by filling the gap between the
distribution of current actions and that of the best-response actions over all agents in the society;
the gap diminishes at a constant rate, regardless of the difference in payoff gains among these
agents. Thus, the heterogeneous standard BRD is aggregable, in the sense that the transition of the
aggregate strategy is completely determined by the current state of the aggregate strategy alone.
Correlation between types and actions does not matter for the transition of the aggregate strategy
at all.

Aggregability eases the analysis significantly, as it reduces the dimension of the dynamic:
while the strategy composition X is a joint distribution over the product space A× Θ of actions
and payoff types, the aggregate strategy x̄ is just a distribution over action set A. But this also
suggests that we cannot employ such an aggregable dynamic, to discuss for example how the
correlation of choices and incentives at the microscopic agent level dynamically affects the macro-
scopic aggregate state beyond a representative agent approach. Besides, it is natural to expect that
a huge disbalance in the incentives to switch actions among different types would cause volatil-
ity of the social state. For the study of these issues, nonaggregable dynamics would be a more
appropriate choice as agents’ switching behavior is more consistent with payoff heterogeneity in
such dynamics. However, no preceding research studies the relationship between aggregation
and evolutionary dynamics beyond the aggregable (i.e., representative agent) framework.

2In their paper, the heterogeneous standard BRD is called Bayesian BRD, and the homogenized smooth BRD as the
aggregate dynamic of the heterogeneous standard BRD is called the aggregate BRD.

3



A B C
A 1 + θ 1 + θ 1 + θ

B 1 2 0
C 1 0 2

(a) Payoff table for type θ (b) Standard BRD (c) Tempered BRD

(d) Smith (e) BNN (f) Replicator
A solid purple line indicates the trajectory of aggregate strategy x̄, and sequences of red circles and blue
crosses show the trajectories of Bayesian strategies x(θH) and x(θL). These trajectories are drawn from
agent-based simulations of discrete-time dynamics with 10000 agents of each type for 5000 periods; an
agent receives a revision opportunity with probability 0.005 in each period. In each dynamic except the
standard BRD, the switching rate (conditional on the receipt of a revision opportunity) is basically set to
1/2 of the payoff gain from the revision. (Note that the maximal payoff difference is 2− 0 and thus the
conditional switching rate is at most 1.)
Figure 1: Dynamics of aggregate strategy in a symmetric 3-action coordination game. The population is
divided to equal masses of two types, θH = 0.4 and θL = 0.1. The initial composition is set to x0(θ

H) =
(ε, 1− ε, 0) (near eB = (0, 1, 0), the left bottom corner of a Kolm triangle) and x0(θ

L) = (ε, 0, 1− ε) (near
eC = (0, 0, 1), the right bottom corner), with ε = 0.01. In most dynamics except the standard BRD, the
aggregate dynamic is more driven by the dynamic of a Bayesian strategy of type θH than that of type
θL. Type θH indeed has a greater payoff gain from revisions, especially around initial periods, and thus
has a greater switching rate except in the standard BRD, in which the switching rate is constant. The
asymmetry of trajectories (curved toward eC) suggests the dependency of these dynamics on the initial
strategy composition. See the Supplementary Note for a more detailed analysis of this example and the
trajectories when the initial composition is reversed between type θH and type θL.

Generic nonaggregability of evolutionary dynamics. Many other dynamics such as pairwise
comparison dynamics, tempered BRDs, excess payoff dynamics and imitative dynamics have the
switching rate dependent on the amount of payoff gain from the switch. This creates biases in the
action distribution of switching agents compared to that of all the other agents; the transition of
the aggregate strategy is more influenced by those who have greater payoff gains. So it matters
which agents face greater payoff gains; the transition of the aggregate strategy cannot be predicted
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without identifying the underlying strategy composition.
In Theorem 2, we rigorously prove that, if different types of agents have different switching

rates, the transition of the aggregate strategy varies with the current strategy composition, not only
with the current aggregate strategy: that is, the dynamic is not aggregable. The nonaggregability
condition in this theorem holds for all the above mentioned dynamics. Furthermore, in Theorem 3,
we consider a binary coordination game and find that, even if an aggregate equilibrium is stable
under the standard BRD and thus the corresponding equilibrium composition is stable under any
admissible dynamic, the aggregate strategy may escape from this aggregate equilibrium under a
nonaggregable admissible dynamic. This happens when the underlying initial strategy composi-
tion largely differs from the equilibrium composition that aggregates to the stable equilibrium and
the variation in the switching rate is sufficiently large. These non-aggregability theorems suggest
that an aggregable dynamic may fail to predict not only short-run transitions but also long-run
outcomes, unless agents’ switching rates are invariant to the degree of payoffs.

Stationarity and stability of equilibrium compositions. In contrast to these negative results on
aggregability, we verify that the stationarity and stability of Nash equilibria extend to those of
equilibrium compositions in the heterogeneous setting. These results have been established in the
homogeneous setting for quite a wide class of evolutionary dynamics: see Sandholm (2010). For
this, the least demanding properties are assumed based on the consistency between payoffs and
switches in evolutionary dynamics. First, no agents should switch actions if and only if they are
choosing the best response actions to their current payoff vector (best response stationarity, Defi-
nition 3). Secondly, the net change in the mass of each action’s players should always be positively
correlated with the relative payoff of the action (the positive correlation, Definition 6). We call a
dynamic that satisfies these two properties an admissible dynamic. We extend equilibrium station-
arity in general and stability in potential games under admissible dynamics to the heterogeneous
setting (Theorems 4 and 5).

We obtain these positive results by directly analyzing the dynamic of strategy composition
over payoff types. The dynamic of the strategy composition over types is defined as a differential
equation over the space of probability measures on the product space of actions and types. We
rigorously define it from the individual agents’ revision processes and verify the existence of a
solution path under mild continuity conditions in Theorem 1. For this rigorous formulation of
the dynamic over a (possibly) continuous-type space in our model, we borrow the formulation
and techniques from the recent literature on continuous-strategy evolutionary dynamics, espe-
cially Oechssler and Riedel (2001, 2002) and Cheung (2014).3 Note that Milgrom and Weber (1985)
consider strategy composition in a general incomplete information game as a joint probability
measure over types and actions, which they call distributional strategy, and verify fundamental
properties of equilibrium distributional strategy such as existence and purification. The measure-

3To name a few more, see also Hofbauer, Oechssler, and Riedel (2009), Friedman and Ostrov (2013), Lahkar and
Seymour (2013) and Lahkar and Riedel (2015).
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theoretic formulation of heterogeneous dynamics in this paper provides a rigorous foundation for
the evolutionary dynamics of distributional strategy.

Specifically for potential games, we prove global asymptotic stability of the set of equilibrium
compositions in Theorem 5. We further find in Corollary 2 that the equivalence between a local
maximum of the potential game and a locally stable equilibrium holds for any admissible hetero-
geneous dynamic, which includes the standard BRD. The aggregate dynamic —the homogenized
smooth BRD—is constructed by having a transitory payoff perturbation instead of a persisitent
payoff perturbation. Each agent’s idiosyncratic payoff can change over time and follows a com-
mon i.i.d. process, which makes all agents homogeneous. To obtain the aggregate dynamic of a
heterogeneous standard BRD, the transitory idosyncratic payoff is supposed to follow the same
probability distribution as that of permanent idiosyncratic payoffs in the heterogeneous setting.
The aggregability theorem in Ely and Sandholm (2005) states that the aggregate strategy under
the heterogeneous standard BRD completely follows the homogenized smooth BRD. Combined
with their aggrebability result on the standard BRD, our local stability theorem suggests that the
local stability of an equilibrium under any heterogeneous dynamic can be tested just by examin-
ing the local stability of the corresponding aggregate equilibrium under the homogenized smooth
BRD: despite generic nonaggregability, the local stability of each equilibrium does not change by
nonaggregability when we consider a potential game in admissible dynamics.

Yet, the homogenized smooth BRD may fail to predict the transition and long-run outcome
from a specific initial state, even in a potential game. The fallacy lies in the gap between the topolo-
gies of strategy composition and aggregate strategy. Local stability under a non-aggregable dy-
namic may require the initial composition to be close to the equilibrium composition, while local
stability under a homogenized smooth BRD requires only the initial aggregate strategy to be close
to the aggregate equilibrium. We clarify this gap by assuming additive separability of payoff het-
erogeneity and then comparing a potential function for admissible dynamics (the heterogeneous
potential function) with a Lyapunov function for the homogenized smooth BRD (the homogenized
potential function). Under additive separability, the payoff of each action is decomposed to the
common payoff function and the idiosyncratic payoff constant: the former depends on the current
aggregate strategy but is common to all agents, and the latter depends only on the type of agent
but does not change with the aggregate strategy or strategy composition. To make a potential
game, the common payoff function is supposed to have a potential function (the original potential
function). The heterogeneous potential function is defined on the space of strategy composition
by adding a negative entropy term that accounts for the sortednesss of the current strategy com-
position to the original potential function, while the homogenized potential function is defined
on the space of aggregate strategy by adding the expected idiosyncratic payoffs of homogenized
agents to the original potential. We find that the latter serves as an upper bound of the former and
they coincide if and only if the strategy composition is at an equilibrium; the heterogeneous po-
tential must increase over time under admissible dynamics and the homogenized potential must
increase under the homogenized smooth BRD. So one may expect them to behave similarly under
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a dynamic. However, the increase in the heterogeneous potential may owe much to the increase
in the negative entropy term (the decrease in entropy) due to sorting pressure. In this case, the
original potential may not increase; then, neither does the homogenized potential. Thus, the ag-
gregate strategy may move away from the closest local maximum of the homogenized potential
function. Therefore, the transition of the aggregate strategy under a nonaggregable dynamic may
completely differ from that of the homogenized smooth BRD.

Implications on empirical and applied study. In an empirical work on discrete choice, an economist
may not have access to micro data and thus may need to use coarse aggregate data. Our negative
results on generic nonaggregability suggests that, even if the economist could precisely identify
the underlying payoff structure, the sensible difference between the transitory payoff perturba-
tion and the persistent payoff heterogeneity results in qualitatively different predictions of the
aggregate dynamic. This raises concerns about empirical studies with aggregate data and puts a
limitation on the interpretation of heterogeneity accounted for by such empirical studies. As we
argue in Section 4, our concern accords with the econometric concern on sample selection raised
by Artuç, Lederman, and Porto (2015); we will see that the problem caused by a wrong specifica-
tion of heterogeneity cannot be resolved even if there were no bias in the estimation.

On the other hand, our positive results on asymptotic equivalence of local stability can relieve
the concerns of applied economists, as long as their main focuses are on long-run outcomes in
potential games. Suppose that their models have only one stable aggregate equilibrium when
they test the dynamic by assuming only transient payoff heterogeneity, i.e., by employing the
homogenized smooth BRD. Corollary 2 tells us that the local stability of the aggregate equilibrium
is retained over all admissible dynamics even if the payoff heterogeneity is persistent.

For a practical application, consider the dynamic implementation of a social optimum in a
congestion game. In the homogeneous setting, a desirable aggregate state could be achieved by
a very simple bang-bang control that gives a subsidy for the actions that need more players and
imposes a tax on the actions that need less. By keeping the taxes and subsidies at extreme levels
in their feasible ranges, convergence can be achieved in a finite time; and it is the fastest among
all the tax/subsidy schemes. But, in the heterogeneous setting, such extreme pricing may result
in excessive distortion of the underlying composition and practically unacceptable instability. To
avoid this, pricing should be less extreme and adjusted continuously over time. Actually, our
stability theorem implies that the dynamic Pigouvian pricing, proposed by Sandholm (2002, 2005),
assures convergence to the social optimum, as long as agents’ switching behavior is consistent
with the current payoffs as generally assumed for the admissibility of evolutionary dynamics. It
does not require the social planner to know the underlying strategy composition or to identify the
underlying dynamic, but works perfectly.

Outline of the paper. The paper proceeds as follows. In the next section, we define the game un-
der payoff heterogeneity, paying attentions to the distinction between the aggregate strategy and the
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strategy composition; we build a heterogeneous evolutionary dynamic from an individual agent’s
switching rate function. In Section 3, we verify the Lipschitz continuity of this dynamic in or-
der to well define the dynamic and guarantee the existence of a unique solution path. In Section
4, we formally define the aggregability of heterogeneous evolutionary dynamics and argue the
generic nonaggregability of heterogeneous dynamics. Section 5 is devoted to presenting the posi-
tive results on equilibrium composition: we extend the stationarity of a Nash equilibrium and its
stability in potential games to that of equilibrium compositions in heterogeneous dynamics; fur-
ther, we study the local stability of each equilibrium composition in potential games and discuss
its implications and applications. Until this section, we focus on non-observational evolution-
ary dynamics in which an agent’s switching rate depends only on the payoff vector for the agent
but not on the other agents’ actions. In Section 6, we consider observational dynamics such as
imitative dynamics and excess payoff comparison dynamics and argue that the theorems in this
paper are readily applied to them as long as each agent observes only agents of the same type;
we discuss the case where an agent observes the aggregate strategy of the entire society instead.
Section 7 wraps up the paper. Appendices provide the proofs and a few technical details on the
measure-theoretic construction of heterogeneous dynamics. Parts of proofs that essentially only
involve heavy calculation are found in the Supplementary Note.

2 Model

2.1 Aggregate games with payoff heterogeneity

Consider a large population of agents Ω := [0, 1] ⊂ R who share the same action set A =

{1, · · · , A}. We define probability measure PΩ : BΩ → [0, 1] as Lebesgue measure so PΩ(Ω) = 1.
Denote by BΩ the Lebesgue σ-field over Ω. Denote by a(ω) the action taken by agent ω ∈ Ω. We
restrict action profile a : Ω → A to a BΩ-measurable function. Then, x̄a := PΩ({ω ∈ Ω : a(ω) =

a}) ∈ [0, 1] is the mass of agents who take action a ∈ A. We call x̄ := (x̄a)a∈A ∈ ∆A the aggregate
strategy, where ∆A := {z ∈ RA

+ : ∑a∈A za = 1} is the set of A-dimensional probability vectors.
We focus on aggregate games with payoff heterogeneity, as follows. Each agent ω ∈ Ω is

assigned to type θ(ω) ∈ RT. Then, the agent’s payoff from action a is Fa[x̄](θ(ω)) when the
aggregate state is x̄. Thus, F[x̄](θ) ∈ RA is the payoff vector at aggregate state x̄ for type θ. Let
| · |∞T be the sup norm on RT and BΘ be the Borel σ-field on this metric space RT.4 Agents’ type
profile θ : Ω → RT is assumed to be measurable with respect to BΩ. Then, it induces probability
measure PΘ : BΘ → [0, 1] by PΘ(BΘ) := PΩ(θ

−1(BΘ)) for each BΘ ∈ BΘ. Denote by Θ ⊂ RT the
support of PΘ; we call it the type space. Given x̄, F[x̄] : Θ → RT is assumed to belong to CΘ, the
set of BΘ-measurable continuous functions from Θ to RA.

In contrast to the aggregate strategy, we define Bayesian strategy x = (xa)a∈A : Θ → ∆A
+ to

represent the strategy composition of actions and types, following terminology of Ely and Sand-

4For a vector θ = (θ1, . . . , θT) ∈ RT , the sup norm of the vector is |θ|∞T = max{|θ1|, . . . , |θT |}. (We omit the
super/subscripts when it is obvious.)
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holm (2005).5 More specifically, xa(θ) is the proportion of action-a players among subpopulation of
type-θ agents. For example, our formulation allows PΘ to have a finite support; then, the Bayesian
strategy is obtained as

xa(θ) = PΩ ({ω ∈ Ω : a(ω) = a and θ(ω) = θ}) /PΘ(θ)

for each type in the support of PΘ. The aggregate strategy is expressed in terms of the Bayesian
strategy as6

x̄a = EΘxa, i.e., x̄ = EΘx.

In general, we first define strategy composition X : BΘ → ∆A as the joint distribution of
actions and types such that the marginal distribution of types coincides with PΘ. Then, Bayesian
strategy x : Θ → ∆A is defined as its Radon-Nikodym density such as Xa(BΘ) =

∫
BΘ

xadPΘ for
each a ∈ A, BΘ ∈ BΘ; we abbreviate this relationship as X =

∫
xdPΘ. Denote by FX the set

of Bayesian strategies.7 Similarly, let X be the set of strategy compositions. Due to one-to-one
correspondence between X and x, they can be seen as equivalent. We consider Bayesian strategies
in the main body of this paper for simplicity in expositions and appealing to intuition, though we
prove most theorems by arguing strategy composition for technical reasons.8 See Appendix A.1
for the measure-theoretic formulation of the model and dynamic.

Example 1 (Additively Separable Aggregate game (ASAG)). In the context of discrete choice mod-
els such as in Anderson, De Palma, and Thisse (1992), it is common to introduce payoff hetero-
geneity in an additively separable manner. That is, the payoff function is additively separated to
the common part and the idiosyncratic part: with T = A, type θ = (θa)a∈A ∈ RA is defined as a
vector of the idiosyncratic payoff of each action for this type, which varies among agents but does
not change over time regardless of the state of the society. Then, an agent of this type receives pay-
off Fa[x̄](θ) = F0

a (x̄) + θa by taking action a. Given the aggregate state x̄, F0(x̄) = (F0
a (x̄))a∈A ∈ RA

is the common payoff vector, shared by all the agents in the society Ω. Thus, for each x̄ ∈ ∆A and

5When calling x : Θ → ∆A
+ a Bayesian strategy, we would imagine a Bayesian game where a player chooses a

strategy (a contingent action plan) before he knows his own type. In a Bayesian game, we distinguish a ‘player’ and
an ‘agent.’ A player comes to the game before knowing its type, and decides on a plan of the action contingent on
the realized type: a Bayesian strategy is this contingent plan of one player. In a Bayesian population game, an agent
comes to the game after knowing his type and decides on an action; the Bayesian strategy is essentially equivalent to
an empirical joint distribution of type and actions.

6Here EΘ is the expectation operator on the probability space (Θ,BΘ, PΘ), while EΩ is that on (Ω,BΩ, PΩ): i.e.,
EΩ f :=

∫
Ω f (ω)PΩ(dω) for a BΩ-measurable function f : Ω → R and EΘ f̃ :=

∫
Θ f̃ (θ)PΘ(dθ) for a BΘ-measurable

function f̃ : Θ→ R. If f = f̃ ◦ θ, then we have EΘ f̃ = EΩ f .
7Two Bayesian strategies x, x′ ∈ FX are considered as identical, i.e., x = x′ if x(θ) = x′(θ) for PΘ-almost all θ ∈ Θ.

They indeed yield the same strategy composition.
8 For mathematical construction of the dynamics and analysis of stability, we basically follow the literature on

evolutionary dynamics on continuous strategy space, such as Oechssler and Riedel (2001) and Cheung (2014). When
proving the existence of a unique solution path, the state space of the dynamic needs to be a Banach space. For this,
they first define the dynamic as a dynamic of probability measure (over the continuous strategy space in theirs and over
the type-action space in ours) and then extend the state space of the dynamic from the probability measure space to the
space of finite signed measures; we take this approach in Appendix A.3. For stability analysis, we use the Lyapunov
stability theorem as in Theorem 10 in Appendix C, in which the stability concept is defined for the weak topology on
X .
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θ ∈ RA,
F[x̄](θ) := F0(x̄) + θ ∈ RA (1)

is the payoff vector for type θ when the aggregate strategy is x̄. We call an aggregate game with
such additively separable idiosyncratic payoffs an additively separable aggregate game (ASAG).

Example 2 (Binary aggregate game). When arguing an aggregate game with two actions, we com-
monly denote the action set as A = {I, O}. We can imagine an entry game in which I means
participation (IN) to a certain platform and O means nonparticipation (OUT). We call such a game
a binary aggregate game.9 If we further assume additive separability of payoff heterogeneity, it
reduces without loss of generality to the payoff function defined by F0

O(x̄) ≡ 0 for each x̄ ∈ ∆2 and
θI(ω) ≡ 0 for each ω ∈ Ω. Now an agent’s type θ is identified by θO ∈ R alone. We can interpret
θO as the agent’s valuation of an outside option. Denote by PΘ : R → [0, 1] be the cumulative
distribution function of θO and ΘO ⊂ R be the support of θO. Then, θ ∈ Θ = {0} × Θ0, x̄ ∈ ∆2

and x : Θ → ∆2 are identified from θ0 ∈ Θ0, x̄I ∈ [0, 1] and xI : ΘO → [0, 1], respectively. We call
this type of a binary aggregate game a binary ASAG.

2.2 Bayesian equilibrium and aggregate equilibrium

Each agent’s best response is determined from the aggregate strategy. Let b[x̄](θ) ⊂ A be the set
of type-θ’s best response actions to aggregate strategy x̄ and F∗[x̄](θ) ∈ R be the payoff from the
best response action.

b[x̄](θ) := argmax
a∈A

F0
a [x̄](θ), F∗[x̄](θ) := max

a∈A
F0

a [x̄](θ).

Given aggregate strategy x̄, b−1
a [x̄] := {θ ∈ Θ : a ∈ β[x̄](θ)} is the set of types for which action a is

a best response. Denote by β−1
a [x̄] := {θ ∈ Θ : b[x̄](θ) = {a}} ⊂ β̄−1

a [x̄] the set of types for which
action a is the only best response to x̄. Let B[x̄](θ) be the set of action distributions that assign
positive probabilities only to the best response actions for type θ given aggregate strategy x̄, i.e.,
the set of type-θ agents’ best response mixed strategies to x̄:

B[x̄](θ) := {y ∈ ∆A : ya > 0 ⇒ a ∈ b[x̄](θ)} for each x̄ ∈ ∆A, θ ∈ Θ.

In a Nash equilibrium, (almost) every agent correctly predicts the strategy composition and
takes the best response to it. Correspondingly, Bayesian strategy x ∈ FX is in Bayesian equilib-
rium, if

x(θ) ∈ B[x̄](θ) with x̄ = EΘx for PΘ-almost all θ ∈ Θ, (2)

9 Blonski (1999) studies aggregable dynamics in a binary aggregate game in which ˙̄x is assumed to be determined by
the difference between the aggregate mass of agents for whom I is the best response to the current aggregate strategy
and that of agents for whom O is the best response.
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or equivalently,

xa(θ) =

1 if θ ∈ β−1
a [x̄],

0 if θ /∈ b−1
a [x̄]

with x̄ = EΘx for all a ∈ A and PΘ-almost all θ ∈ Θ.

That is, if a is the unique best response for type θ, (almost) all the agents of this type should take
it; if a is not a best response, (almost) none of these agents should take it. We leave indeterminacy
of xa(θ) if there are multiple best response actions for θ and a is just one of them.

Aggregation of Bayesian equilibrium over types yields

PΘ(β−1
a [x̄]) ≤ x̄a ≤ PΘ(b−1

a (x̄)) for all a ∈ A. (3)

If aggregate strategy x̄ satisfies condition (3), it is called an aggregate equilibrium. Notice that
aggregate equilibrium does not imply that the underlying Bayesian strategy is a Bayesian equilib-
rium. Bayesian equilibrium needs complete sorting of agents by types, while only the total mass
of each action’s players matters to aggregate equilibrium.

2.3 Construction of heterogeneous dynamics

In an evolutionary dynamic, an agent occasionally revises the action, following a Poisson process.
The timing of switch and the choice of which action to switch to are determined by switching rate
function R = (Rij)i,j∈A : RA → RA×A

+ . An economic agent should base the switching decision
on the payoff vector that the agent is facing. Let π(θ) ∈ RA be the payoff vector for type θ. The
switching rate Rij(π(θ)) ∈ R+ is a Poisson arrival rate at which a type-θ agent switches to action
j ∈ A conditional on that the agent has been taking action i so far, given payoff vector π(θ). The
analysis in this paper is applicable to observational dynamics, in which switching rates also depend
on the action distribution of others, but we postpone it to Section 6 for clearness of exposition.

Under switching rate function R : RA → RA×A
+ , we construct the mean dynamic of Bayesian

strategy over FX with function v = (vi)i∈A : RA × ∆A → RA by

ẋi(θ) = vi(π(θ), x(θ)) := ∑
j∈A

xj(θ)Rji(π(θ))− xi(θ) ∑
j∈A

Rij(π(θ)),

i.e., ẋ(θ) = v(π(θ), x(θ)) (4)

for each type θ ∈ Θ and each action i ∈ A. In an infinitesimal length of time dt ∈ R, ∑j∈A xj(θ)Rji(π(θ))dt
is approximately the mass of type-θ agents who switch to action i from other actions j ∈ A, i.e.,
the gross inflow to xi(θ); similarly, xi(θ)∑j∈A Rij(π(θ))dt is the gross outflow from xi(θ). Thus,
vi(π(θ), x(θ))dt is the net flow to xi(θ) in this period of time dt.

In a heterogeneous population game F, the mean dynamic (4) of Bayesian strategy defines the
heterogeneous Bayesian dynamic vF over FX by

ẋ(θ) = vF[x](θ) := v(F[x̄](θ), x(θ)) ∈ RA with x̄ = EΘx

for each type θ ∈ Θ.
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Examples of evolutionary dynamics

To give a concrete image of switching rate functions, here we see major evolutionary dynamics.10

In particular, we separate the dynamics based on optimization from others because they need
different regularity conditions to guarantee existence of a unique solution trajectory.

Continuous dynamics. In the switching rate function of a continuous dynamic, the switching
rate function Rij continuously changes with the payoff vector.

Definition 1 (Continuous dynamics). In a continuous dynamic, switching rate function Rij :
RA → R+ of each pair of actions i, j ∈ A is Lipschitz continuous.

Example 3. In a class of pairwise comparison target dynamics, the switching rate Rij depends
only on the payoff difference πj(θ)− πi(θ). In particular, the switching rate function Rij(π(θ)) =

[πj(θ)− πi(θ)]+ defines the Smith dynamic (Smith, 1984).11

Example 4. Because of continuity, we classify smooth best response dynamics (Fudenberg and
Kreps, 1993) into continuous dynamics. For example, the logit dynamic (Fudenberg and Levine,
1998) is constructed from Rij(π(θ)) = exp(µ−1πj(θ))/ ∑a∈A exp(µ−1πa(θ)) with noise level µ >

0. This switching rate function can be obtained from perturbed optimization: upon a receipt of
a revision opportunity, an agent draws a random perturbation in each action a’s payoff εa from
the double exponential distribution12 and then switches to the action that maximizes πa(θ) + εa

among all actions a ∈ A. In general, a smooth best response dynamic can be constructed from
such perturbed optimization under some admissibility condition: see Hofbauer and Sandholm
(2002, 2007).

Note that payoff perturbation ε = (εa)a∈A is transient and a different value of ε will be drawn
in the next revision opportunity, while the probability distribution is assumed to be i.i.d. So, there
is no (ex ante) heterogeneity in ε. In contrast, the idiosyncratic payoff vector θ in our heteroge-
neous setting is persistent. To make comparison with heterogeneous dynamics, we can consider
the homogenized smooth BRD, following the idea of Ely and Sandholm (2005): the unperturbed
part of payoff vector π0 is common to all agents (i.e., θ(ω) ≡ 0 for all ω ∈ Ω). Then, agents follow
the smooth BRD with the transient payoff perturbation ε drawn from the distribution PΘ.13 Given
π0 = F0(x̄), action a is the unique best response after drawing ε if ε ∈ β−1

a [x̄]. This happens with

10Readers who are familiar with major evolutionary dynamics may just scan this subsection quickly and jump to
Definitions 1 and 2. Yet, it is recommended to check the homogenized smooth BRD and the tempered BRD, since they
will play major roles in this paper.

11[·]+ is an operator to truncate the negative part of a number: i.e., [π̆]+ is π̆ if π̆ ≥ 0 and 0 otherwise.
12Given the noise level µ, the cumulative distribution function of the double exponential distribution is P(εa ≤ c) =

exp(− exp(−µ−1c− γ)) where γ ≈ 0.5772 is Euler’s constant.
13To make this dynamic comparable with heterogeneous dynamics under persistent idiosyncratic payoffs θ ∈ RA,

we reuse the distribution PΘ of θ as the distribution of ε ∈ RA. That is, an agent in the homogenized smooth BRD
draws an idiosyncratic payoff vector from PΘ at each revision opportunity, while an agent in a heterogeneous dynamic
draws an idiosyncratic payoff vector only once and keeps it forever.
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probability PΘ(β−1
a [x̄]). Therefore, the homogenized smooth BRD is obtained as14

˙̄xa = PΘ(β−1
a [x̄])− x̄a for each a ∈ A.

Note that, in a binary ASAG, this reduces to

˙̄xI = PΘ(F0
I (x̄I))− x̄I ,

since β−1
I = {θ : θO < F0

I (x̄I)}. The sign of ˙̄xI is thus identical with that of F0
I (x̄I)− P−1

Θ (x̄I).

Exact optimization dynamics. In an exact optimization dynamic, agents switches only to best
responses to the current payoffs: if action j does not yield the maximal payoff among π(θ) =

(π1(θ), . . . , πA(θ)), then Rij(π(θ)) = 0 for any i. The switching rate to an optimal action can vary
with π(θ) and i, j ∈ A. Denote by Qij(π(θ)) the conditional switching rate from i to j when j is the
unique best response. In the definition below, we extend the domain of Qij to RA while assuming
its continuity over the whole domain. The actual switching rate Rij is defined as the truncation of
Qij when j is not a best response; the truncation causes discontinuity.

Definition 2 (Exact optimization dynamics). In an exact optimization dynamic, switching rate
function Rij : RA → R+ of each pair of actions i, j ∈ A is expressed as

Rij(π(θ)) =

0 if j /∈ argmaxa∈A πa(θ),

Qij(π(θ)) if {j} = argmaxa∈A πa(θ),

with a Lipschitz continuous function Qij : RA → R+.

Example 5. In the standard BRD (Hofbauer, 1995b; Gilboa and Matsui, 1991), a revising agent
switches to the optimal action that maximizes the current payoff with sure. That is, the standard
BRD is an exact optimization dynamic with Qij ≡ 1. The heterogeneous version is considered in
Ely and Sandholm (2005); they prove that the aggregate strategy in the heterogeneous standard
BRD follows the homogenized smooth BRD.

Example 6. Consider a version of BRD in which the switching rate to the unique best response
Qij depends on the payoff difference (the payoff deficit) between the current strategy i and the
best response j, i.e., Qij(π(θ)) = Q(πj(θ)− πi(θ)) whenever j ∈ argmaxa∈A πa(θ). Function Q :
R+ → [0, 1] is called tempering function and assumed to be non-decreasing and, especially, strictly
increasing in an interval [0, π̆]) with π̆] ∈ R+ ∪ {+∞} and continuously differentiable. Then this
switching rate function yields the tempered BRD (Zusai, 2017b).15 Given payoff function F, we
denote the payoff deficit of action i for type θ at aggregate strategy x̄ by F̆i[x̄](θ) := F∗[x̄](θ) −
Fi[x̄](θ).

Note that, if there are only two actions, a continuous dynamic such as a pairwise comparison
target dynamic reduces to an exact optimization dynamic as long as an agent never switches to a
worse action than the current action, i.e., Rij(π) = 0 whenever πi > πj.

14Assumption 3 is assumed here to eliminate indeterminacy of the aggregate best response.
15In Zusai (2017b), this switching rate function can be further constructed from optimization with stochastic switch-

ing costs.
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3 Existence of a unique solution trajectory

We verify the Lipschitz continuity of the dynamic to guarantee the existence of a unique solution
trajectory. For this goal, we impose regularity assumptions. First of all, for simplicity to define the
dynamic, we extend the domain of F(θ) to RA: F(θ) is a function that maps state x̄ ∈ RA to payoff
vector π ∈ RA. We impose the following regularity condition on the payoff function F.

Assumption 1 (Regularity assumption on the payoff function). Given θ ∈ Θ, F(θ) : RA → RA is
Lipschitz continuous with Lipschitz constant LF(θ). In addition, L̄F := EΘLF < ∞.

This assumption is satisfied in an ASAG, as long as the common payoff function F0 : RA → RA

is Lipschitz continuous.
To ensure the existence of a unique solution trajectory, we assume that the switching rate is

bounded. The assumption is satisfied in an ASAG, if the type distribution PΘ has a bounded
support and the common payoff function F0 is continuous, even if the switching rate function
itself is not bounded over the whole domain RA like the Smith dynamic.

Assumption 2 (Bounded switching rates). There exists R̄ ∈ R+ such that

Rij(F[m̄](θ)) ≤ R̄ with m̄ = EΘm

for the density of any finite signed measure m and for any i, j ∈ A and θ ∈ Θ.

For an exact optimization dynamic, Lipschitz continuity of Qij is not sufficient, as it does not
guarantee Lipschitz continuity of switching rate function R due to truncation when the best re-
sponse action changes. The switching rate Rij is supposed to change only continuously thanks to
continuity of Qij when action j remains to be the unique best response. However, payoff changes
may cause change of the best response, which triggers discontinuous changes in the switching
rate Rij to the new best response from zero to some positive rate Qij and in the switching rate
to the old one from positive to zero. The next assumption states that the mass of agents who
experience switches of best responses due to payoff changes grows only continuously with the
payoff change; thus, despite discontinuous changes in individual agents’ switching rates, the sum
of these changes over all the agents becomes continuous.

Assumption 3 (Continuous change in best response). If the switching rate function R : RA →
RA×A

+ is an exact optimization protocol, then there exists Lβ ∈ R+ such that

PΘ(β−1
b (x̄) ∩ β−1

c (x̄′)) ≤ Lβ|x̄− x̄′|

for any two distinct actions b, c ∈ A such that b 6= c and any two distinct states x̄, x̄′ ∈ ∆A such
that x̄′ 6= x̄.

Note that this assumption imposes a condition on the type distribution only for exact opti-
mization dynamics; continuous dynamics do not need any such assumption on the type space for
existence of a unique solution trajectory.
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In an ASAG, Assumption 3 is satisfied if the distribution of differences in idiosyncratic payoffs
between every two actions satisfies a Lipschitz-like continuity in the sense that there exists p̄Θ ∈ R

such that PΘ({θ ∈ Θ : c ≤ θb − θa ≤ d}) ≤ (d− c) p̄Θ for any a, b ∈ A and any c, d ∈ R such that
d > c.

Theorem 1 (Existence of a unique solution trajectory under Bayesian dynamic). Consider a hetero-
geneous Bayesian dynamic vF in a population game F under a continuous dynamic or an exact optimization
dynamic. Under Assumptions 1 to 3, the following holds.

i) Function vF over FX is Lipschitz continuous in L1-norm over FX .

ii) There exists a unique solution trajectory {xt}t∈R+ ⊂ FX of ẋt = vF[x] from any initial Bayesian
strategy x0 ∈ FX .

4 Nonaggregability of heterogeneous dynamics

4.1 Generic nonaggregability of instantaneous transition

Given population game F, the Bayesian dynamic ẋ = vF[x] is defined on the space of Bayesian
strategy FX : to predict the transition ẋ, we need to identify the Bayesian strategy or equivalently
the strategy composition over A × Θ. Transition of the aggregate strategy ˙̄x is obtained from
aggregation of ẋ: that is, ˙̄x is obtained as

˙̄x = EΘẋ = EΘvF[x].

As noted in the introduction, the preceding literature of heterogeneous evolutionary dynamics
focused on aggregable dynamics, in which the transition of the aggregate strategy ˙̄x can be identi-
fied by the current aggregate strategy x̄ alone. More specifically, we say that Bayesian dynamic vF

over FX is aggregable if there is an aggregate dynamic v̄F : ∆A → RA such that {EΘxt}t∈R+ ⊂ ∆A

is a solution trajectory of v̄F whenever {xt}t∈R+ ⊂ FX is a solution trajectory of vF: that is,[
x̄t = EΘxt and ẋt = vF[xt]

]
=⇒ ˙̄xt = v̄F(x̄t)

for all t ∈ R+. As proven by Ely and Sandholm (2005, Theorem 5.4), this aggregability condition
is equivalent to the interchangeability of aggregation and dynamic, or more specifically,

EΘvF[x] = v̄F (EΘx) for any x ∈ FX .

They further verify that the standard BRD is aggregable and the aggregate strategy under the
heterogeneous standard BRD follows the homogenized smooth BRD.

However, aggregability is indeed quite demanding for other evolutionary dynamics such as
payoff comparison dynamics and imitative dynamics. The above condition requires the transition
vector of an aggregate dynamic to vary only with the aggregate strategy, independently of the
underlying strategy composition. An evolutionary dynamic is not aggregable when difference
in the payoff vector over different types causes different switching rates. Nonaggregability is
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Figure 2: The common payoff function and the inverse c.d.f. of the type distribution in a binary coordination
ASAG.

common to major evolutionary dynamics, since most of them—except the standard BRD—have
the switching rate continuously changing with the payoff vector.

Theorem 2 (Generic nonaggregability). Consider a heterogeneous dynamic in an aggregate game with
more than one payoff types. The dynamic is not aggregable and ˙̄x is not wholly determined from x̄ alone,
unless x̄ is a pure strategy aggregate equilibrium or the variation in Rji(F[x̄](θ)) + ∑k 6=i Rik(F[x̄](θ)) is
zero for every two distinct actions i, j ∈ A such that i 6= j and x̄j > 0.

In a binary aggregate game, the variation condition in the above theorem reduces to the zero
variation in RIO(F[x̄](θ)) + ROI(F[x̄](θ)), which we can call the unconditional total revision rate
since it does not condition on the agent’s current action.16 In major evolutionary dynamics except
smooth BRDs, an agent never switches to an action that is worse than the agent’s current action.
Thus, the unconditional total switching rate in a binary aggregate game is simply the switching
rate from a suboptimal action to the optimal action. In a tBRD and any payoff comparison dynamic
such as the Smith dynamic, the revision rate from a suboptimal action to the optimal action in a
binary game is an increasing function of the payoff deficit F̆∗[x̄](θ). Thus, these dynamics are not
aggregable. By the same token, we can confirm nonaggregability of excess payoff dynamics and
imitative dynamics; see Section 6.

4.2 Nonaggregability of long-run outcome from a fixed initial state

The above nonaggregability theorem only states the condition under which the instantaneous
transition of the aggregate state cannot be predicted from the current aggregate state. One may
wonder if any such non-predictability can last even in the long run. Below we focus on a binary
coordination ASAG and study the condition under which the aggregate state moves away from an
aggregate equilibrium that is stable under the homogenized BRD when the difference in switching
rates is large enough.

16Note that here we do not assume additive separability of payoff heterogeneity.
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Consider a binary ASAG such as

F0
I (x̄I)


> if x̄I ∈ (x̄†

I , x̄∗I ),

= P−1
Θ (x̄I) if x̄I ∈ {x̄†

I , x̄∗I }

< if x̄I /∈ [x̄†
I , x̄∗I ],

where 0 < x̄†
I < x̄∗I < 1. Assume strict increasingness of F0

I (positive externality of action I) and
continuous type distribution of θO, i.e., continuity of c.d.f. PΘ, as well as Lipschitz continuity of
FI . Under the homogenized smooth BRD, x̄I = 0 and x̄I = x̄∗I are stable aggregate equilibria and
x̄I = x̄†

I is an unstable one. We call this game a binary coordination ASAG. Further, we assume
that there is a lower bound θO on the type space ΘO ⊂ R.

Consider a heterogeneous dynamic starting from the initial Bayesian strategy x0 such as

x0
I (θO) =

1 if θO > P−1
Θ (1− x̄∗I ),

0 if θO < P−1
Θ (1− x̄∗I ).

In this composition, those who have relatively high values of the outside option θO happen to
choose I while those who have lower values of the outside option happen to choose O; so their
choices are initially opposite to their current best responses. We call this composition a reversed
composition. The type θ̂0

O := P−1
Θ (1− x̄∗I ) is the threshold between initial action-I players and O

players. Assume θ̂0
O > θ∗O := F0

I (x̄∗I ).
Yet, the aggregate strategy in this strategy composition coincides with aggregate equilibrium

x̄∗I . Thus, the aggregate strategy must stay there under the homogenized smooth BRD; since it
is also a stable equilibrium, it cannot leave this aggregate equilibrium even if there is so a small
perturbation that keeps the aggregate strategy x̄I above x̄†

I .
However, the next theorem suggests that the aggregate strategy may escape from the “stable”

aggregate equilibrium x̄∗I and it may even converge to another aggregate equilibrium x̄I = 0. This
depends on the difference in switching rates between those who switch from I to O and those
who switch from O to I. The next theorem presents a rough sufficient condition that allows us to
predict the escape just by comparing the switching rate of the threshold type θ̂0

O and that of the
lowest type θO = θO at time 0.

Theorem 3 (Escape from a “stable” aggregate equilibrium in a binary coordination ASAG). Con-
sider a heterogeneous dynamic in a binary coordination ASAG, starting from reversed composition x0 at
time 0. Assume θ̂0

O = P−1
Θ (x̄∗I ) > θ∗O = F0

I (x̄∗I ). Suppose that the switching rate function Rij is mono-
tone to payoff gains from switches, in the sense that Rij(π) is an non-decreasing function of πj − πi and
Rij(π) = 0 only if πj ≤ πi. Assume r := ROI(F[x̄∗](θO))/RIO(F[x̄∗](θ̂0

O)) < 1. Then, the following
holds.

i) x̄I decreases from x̄∗ at least temporarily: dx̄I/dt < 0 at time 0.

ii) x̄I reaches x̄∗I (1− (1− r)rr/(1−r)) at some moment of time.
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Furthermore, assume symmetry and strict payoff monotonicity of switching rate in the sense that there
exists a strictly increasing function R : R → R+ such that RIO(π) = R(πO − πI), ROI(π) = R(πI −
πO) and R(π̆) = 0 for any π̆ ≤ 0. Then, if there is an aggregate state x̄‡

I such that

FI(x̄I) ≤ 0.5
(

P−1
Θ (x̄I) + θO

)
whenever x̄I ≤ x̄‡

I

and the ratio of the initial switching rates r satisfies

x̄∗I (1− (1− r)rr/(1−r)) ≤ x̄‡
I ,

then the solution trajectory from the reversed composition x0 converges to x̄I = 0.

It is shown in the proof that the aggregate strategy x̄I must decrease whenever x̄I reaches
x̄‡

I , regardless of the underlying strategy composition; because of this, we call x̄‡
I a robust critical

mass to decrease x̄I . The above inequality guarantees that it is surely reached in a finite time. After
then, x̄I must keep decreasing to x̄I = 0. Note that, 1− (1− r)rr/(1−r) is an increasing function of
r, converging to 0 as r → 0 and to 1 as r → 1. Therefore, the condition is satisfied if r is sufficiently
small, namely, if switching rates are so elastic to payoff differences and the difference in switching
rates between different types is large enough.

Note that the escape from the “stable” aggregate equilibrium x̄‡
I is not due to overshooting due

to payoff perturbation or fluctuation in the initial aggregate strategy. The word “over” would infer
so strong driving force toward an equilibrium that cannot be ceased even when the state reaches
the equilibrium. However, as shown analytically in the proof of the above theorem and illustrated
numerically in the next example, the aggregate dynamic starts exactly from x̄‡

I , moves away from
it since the very initial period, and then monotonically converges to another aggregate equilibrium
x̄I = 0. In short, the cause of non-aggregability in the long-run outcome lies in the change in
direction of the aggregate transition itself, not about the strength of the transition.

Example 7. Figure 3 shows the dynamic in such a binary coordination ASAG, in which the common
payoff function is specified as F0

I (x̄I) = (49x̄I − 1)/20 and the c.d.f. is PΘ(θO) =
√

θO + 1− 1 with
support ΘO = [0, 3]. The interior stable equilibrium is x̄∗I = 0.25, and the initial aggregate strategy
is set to this. While the unstable equilibrium is x̄†

I = 0.2, x̄‡
I = 0.1 is a robust critical mass.

Under the the standard BRD, the aggregate strategy remains at aggregate equilibrium x̄I =

0.25, as shown in Figure 3c. If we sort agents by θO, the lowest 25% of agents should take I
and the others should take O in the Bayesian equilibrium with x̄I = 0.25. In these figures, the
former group of agents is called group I (to be IN) and the latter group is called group O (to be
OUT). According to Figure 3b, the underlying strategy composition approaches the corresponding
equilibrium composition, where the proportion of I-players in group I is 1 and that in group O is
0.

As an example of nonaggregable dynamics, we consider a pairwise comparison dynamic such
as Rij = ([πj − πi]+)

3.17 This nonaggregable dynamic drives the aggregate strategy away from
x̄I = 0.25 and looks leading it to x̄I = 0 in Figure 3d. From a close look at this figure, we can see

17Due to binary actions, this can be also interpreted as a tempered BRD with Q(π̆) = π̆3.
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˙̄x I=PΘ (F I
0
( x̄I ))− x̄I

x̄ I0
0.2 0.25

˙̄x I

(a) ˙̄xI in the homogenized smooth BRD

(b) Paths of composition

(c) The heterogeneous standard BRD

(d) The heterogeneous pairwise comparison dynamic/tBRD

Figure 3: Numerical simulations of the BRD and the pairwise comparison dynamic/tBRD in a binary co-
ordination ASGA. In Figure 3b, the thin solid line shows the set of compositions that keep the aggregate
strategy to one of aggregate equilibria x̄I = 0.25; the dashed line corresponds to another aggregate equi-
librium x̄I = 0.20 and the dotted line to x̄I = 0.1. In Figures 3c and 3d, the horizontal lines show these
aggregate equilibria as well.

that the switching agents in group I actually choose I in the first 100 periods, like in the standard
BRD; but their switches are slower than the switches of agents in group O. So the aggregate share
of I-players decreases.

The aggregate strategy leaves the aggregate equilibrium x̄I = 0.25 under the pairwise com-
parison dynamic, despite stability under the standard BRD, because those who switch from I to O
face greater payoff gains than those from O to I and the pairwise comparison dynamic allows the
former to switch faster than the latter. Thus, the outflow from I to O outweighs the inflow from
O to I in the aggregate transition of x̄I and thus lowers the aggregate proportion of I-players. In
this example, this dominance continues so to push x̄I,t down lower than the robust critical mass
x̄I = 0.10.

More detailed investigation of long-run nonaggregability in binary ASAGs is presented in a
companion paper (Zusai, 2017a). The paper presents a general condition for robust critical masses
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and its application to equilibrium selection. It also exhibits generic non-stationarity of aggregate
equilibrium under nonaggregable dynamics; in order to keep an aggregate strategy at an aggre-
gate equilibrium, the distribution of the switching rates needs to satisfy some balancing condition,
which is intuitively shown in the paper. Further, the paper shows that aggregate strategy gener-
ally fluctuates around an interior aggregate equilibrium, even if it is stable under a nonaggregable
dynamic.

4.3 Implication on empirical methodology

There is a growing literature on estimation of discrete choice models in the presence of switching
costs and heterogeneity over individuals. In health economics and IO/marketing research, it is
possible to obtain micro data and thus directly observe the individual-level decision dynamic, i.e.,
the dynamic of strategic composition.18 But, in many cases, researchers may not have an access
to desirable micro data. To study dynamics at individual level, one needs to track the behavior
of each individual over time and thus needs to identify each individual in the sample and tag
the identity with the data. Such well-designed micro data may not be collected if there is no
particular intention for the data collecting agency to analyze the panel data. For example, a local
transportation agency may be monitoring the aggregate traffic volumes on each major street but
may not track each individual car’s trip. Even if there is such data, privacy protection may be so
strict or data collecting companies may charge so high price on access to data that micro panel
data is not accessible to academic researchers.

Hence, applied economists may hope to do some rough study on aggregate dynamic from ag-
gregate data. From theoretical analysis of Bertrand competition with consumers subject to switch-
ing costs, Shy (2002) proposes a formula to calculate the switching costs from product prices and
the aggregate strategy distribution by utilizing the equilibrium condition on these aggregate vari-
ables and this method is widely used in applied empirical research. But, as Shy noted, his model
assumes homogeneity of agents except their initial choices and also presumes equilibrium.19 In
an empirical study on international migration, Artuç, Lederman, and Porto (2015) acknowledge
the limitation of such reduced-form approach: they run Monte Carlo simulation using micro data
on labor mobility in the United States. They find that, if heterogeneity is persistent and also in-
dividual decisions incur switching costs, the logit estimation based on the aggregate data yields
sample selection biases in the degree of estimated parameters compared to the regression directly
from the micro-data. The main issue of their study is international migrations from developing
countries and thus they do not have micro data on this issue. Hence, they have to admit that
only transient heterogeneity as assumed in the homogenized smooth BRD is captured in their
econometric framework.

18For example, see Goettler and Clay (2011) and Handel (2013).
19Shy admits that equilibrium does not exist in the Bertrand game, though he makes justification of the use of the

equilibrium condition (a variant of the condition for no profitable deviation). Also, Shy’s paper belongs to applica-
tions of economic theory and is not intended to offer a rigorous econometric theory, unlike the current most advanced
empirical study in estimations of switching costs.
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We share the same concern on over-simplification of aggregate dynamic in the presence of het-
erogeneity and indeed put it further. The theoretical study in this paper suggests that, even if an
economist somehow precisely knows the common payoff function, the distribution of idiosyncratic
payoffs, and the switching rate functions of individuals, an aggregable dynamic that assumes
transitory payoff heterogeneity yields a different prediction on the change in aggregate strategy
compared to the nonaggregable dynamic in which payoff heterogeneity is persistent. The differ-
ence is not only in magnitudes of changes but also in directions of changes and indeed in long-run
outcomes.

5 Bayesian equilibrium: stationarity and stability

5.1 Extension of stationarity and stability to heterogeneous dynamics

Our dynamic could be seen as extension of evolutionary dynamics in a single homogeneous popu-
lation to continuously many heterogeneous populations, though the existence of a unique solution
trajectory requires careful formulation of the state space. despite negative results of generic nonag-
gregability, it is natural to expect that stationarity and stability of Nash equilibrium are extended
to Bayesian equilibrium in the heterogeneous setting.

As long as agents obey the same switching rate function R = (Rij)i,j∈A : RA → RA×A
+ , the

homogeneous mean dynamic of the action distribution x0 ∈ ∆A over all the agents in the society
follows the same function v : ∆A × RA → RA as the heterogeneous mean dynamic (4) of the
action distribution x(θ) ∈ ∆A over all the agents with the same type θ; each individual agent’s
switch from current action i to new action j is completely determined from the agent’s payoff
vector through the switching rate function Rij : RA → R+ and those switches over the agents
who face the same payoff vector are simply summed to the mean dynamic v. The difference lies
only in what payoff vector to be plugged in v.

More specifically, in the homogeneous setting, the payoff vector π0 ∈ RA is common to all
the agents in the society and the action distribution is just A-dimensional, i.e., x0 ∈ ∆A. Thus, the
homogeneous version of each evolutionary dynamic is straightforwardly obtained by plugging
π0 into the switching rate function R of the dynamic. That is, the homogeneous mean dynamic is
obtained as

ẋ0
i = ∑

j∈A
x0

j Rji(π
0)− x0

i ∑
j∈A

Rij(π
0) for all i ∈ A. (5)

Compare this equation with (4) that defines the mean dynamic function v and then we can find
ẋ0

i = vi(π
0, x0) for each i and thus ẋ0 = v(π0, x0). In homogeneous population game F0 : ∆A →

RA, this induces the homogeneous evolutionary dynamic vF0
over ∆A such as

ẋ0 = vF0
(x0) := v(F0(x0), x0).
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Stationarity of Bayesian equilibrium

To link the homogeneous dynamic ẋ0 = vF0
(x0) on ∆A and the heterogeneous Bayesian dynamic

ẋ = vF[x] on FX , we first identify the properties of the mean dynamic v that induce stationar-
ity and stability of equilibrium, separately from the population game. This separation is useful
because both homogeneous and heterogeneous dynamics stem from the same mean dynamic v
(constructed from the same switching rate function R). Their difference is found in the population
game played by agents, namely F or F0.

In the homogeneous setting, stationarity of Nash equilibrium is an immediate consequence of
stationarity of the action distribution in which agents are taking the best response to the current
payoffs, or shortly best response stationarity: the action distribution does not change if every agent
is taking an optimal action given the current payoff vector.

Definition 3 (Best response stationarity of mean dynamic). Mean dynamic v : ∆A ×RA → RA

satisfies best response stationarity if, for any π0 ∈ RA, x0 ∈ ∆A,

v(π0, x0) = 0 ⇐⇒ ∀b ∈ A[x0
b > 0 ⇒ π0

b ≥ π0
a ∀a ∈ A]. (6)

All the dynamics mentioned in Section 2.3, except smooth BRDs, satisfy the best response
stationarity.20 The logit dynamic satisfies a version of these properties, modified for logit choice;
similar for other smooth BRDs. In a homogeneous population game, best response stationarity
implies stationarity of Nash equilibrium and non-stationarity of non-equilibrium states:

vF0
(x0) = 0 ⇐⇒ x0 is a Nash equilibrium in F0.

In the heterogeneous setting, best response stationarity applies to each type: the action distri-
bution of a particular type θ remains unchanged if and only if almost all agents of this type choose
the best response to the current payoff for this type. Thus, it is natural that best response sta-
tionarity implies stationarity of a Bayesian equilibrium and non-stationarity of non-equilibrium
Bayesian strategies.

Theorem 4 (Stationarity of Bayesian equilibrium). Suppose that mean dynamic v satisfies the best re-
sponse stationarity (6). Then, in any heterogeneous population game F, a Bayesian equilibrium is stationary
under the heterogeneous evolutionary dynamic vF:

vF[x](θ) = 0 for PΘ-almost all θ ∈ Θ ⇐⇒ x is a Bayesian equilibrium in F. (7)

We saw that stationarity of aggregate equilibrium is not guaranteed any more. But Theorem 4
mitigates concerns about equilibrium stationarity. If the underlying Bayesian strategy is exactly a
Bayesian equilibrium and thus is perfectly sorted, it stays there; as a consequence, the aggregate
strategy also remains at the corresponding aggregate equilibrium. This clarifies that the driving

20In the homogeneous version of exact optimization dynamics, the best response stationarity needs to further as-
sume Rij(π) = 0 when the current action i is a best response to π; this was not assumed in our definition in cases
of multiple best responses. In the heterogeneous setting, this concern on multiple best responses is eliminated by the
assumption of non-atomic type distribution. That is, Assumption 3 replaces the assumption of Rij(π) = 0 for best
response i to π.
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force to move the aggregate strategy from an aggregate equilibrium is indeed the nonaggregable
sorting pressure on the underlying strategy composition toward a perfectly sorted composition.

Stability of Bayesian equilibrium in potential games

While stability of Nash equilibrium is not generally guaranteed even in the homogeneous setting,
it is verified for potential games under a wide class of evolutionary dynamics. For a game played
in large population, a potential game is defined as a game whose payoff vector can be derived as
the derivative of some scalar-valued function, i.e., a potential function. It is equivalent to exter-
nality symmetry: the change in the payoff of an action by change in the mass of another action’s
players is symmetric between these two actions. The class of potential games includes random
matching in symmetric games, binary games and congestion games. Sandholm (2010, Chapter 3)
provides further explanation and examples.

Definition 4 (Potential game in the homogeneous setting). Homogeneous population game F0 :
∆A → RA is called a potential game if there is a scalar-valued continuously differentiable function
f 0 : RA → R whose gradient vector always coincides with the payoff vector: for all x̄ ∈ ∆A, f 0

satisfies
∂ f 0

∂x̄a
(x̄) = F0

a (x̄) for all a ∈ A,

i.e., ∇ f 0(x̄) :=
(

∂ f 0

∂x̄1
(x̄), . . . ,

∂ f 0

∂x̄A
(x̄)
)
= F0(x̄).

Definition 5 (Potential game in the heterogeneous setting). Aggregate heterogeneous population
game F : ∆A → CΘ is called an (aggregate) potential game if there is a scalar-valued Fréchet-
differentiable function f : X → R that is continuous in the weak topology on the strategy com-
position space X and whose Fréchet-derivative at each composition X ∈ X coincides with F[x̄] at
the corresponding aggregate state x̄ ∈ ∆A.21

Both in the homogeneous and heterogeneous settings, all local maxima and interior local min-
ima of a potential function, and indeed all the solutions of the Karash-Kuhn-Tucker first-order con-
ditions for extrema are equilibria in a potential game; see Sandholm (2001) for the proof for Nash
equilibrium in a homogeneous potential game and Sandholm (2005, Appendix A.3) for Bayesian
equilibrium in a heterogeneous potential game.

While the potential f is defined as a function of strategy composition X ∈ X , we can say that
the potential of a Bayesian strategy x ∈ FX is f (

∫
xdPΘ) where

∫
xdPΘ ∈ X is the corresponding

strategy composition. Below we abuse the notation of f to mean f (
∫

xdPΘ) by f (x), justified by
one-to-one correspondence between X and x, as discussed in Appendix A.1.

21That is, at each strategy composition X ∈ X with the aggregate strategy x̄ = X(Θ), the payoff vector function
F[x̄] ∈ CΘ satisfies f (X′) = f (X) + 〈F[x̄], X′ − X〉 + o(‖X′ − X‖∞

A×Θ) for any X′ ∈ X . Here, operator 〈·, ·〉 is defined
as 〈π, ∆X〉 =

∫
Θ ∑a∈A πa(θ)∆Xa(dθ) = EΘ[π(θ) · ∆x(θ)] for each π ∈ CΘ and ∆X =

∫
∆xdPΘ ∈ MA×Θ. The

norm ‖ · ‖∞
A×Θ is the variational norm on X to metrize the strong topology: we have ‖∆X‖∞

A×Θ = ∑a∈A EΘ|∆xa| by
Theorem 8 in Appendix A.2. Fréchet-differentiability is defined for the strong topology and thus continuity in the weak
topology is additionally required.
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The key property of evolutionary dynamics for equilibrium stability in potential games is the
positive correlation: net increase of each action’s player and the action’s payoff is positively corre-
lated and the correlation is strictly positive unless the strategy distribution is unchanged. Major
evolutionary dynamics, except smooth BRDs, satisfy the positive correlation.22

Definition 6 (Positive correlation of mean dynamic). Mean dynamic v : ∆A ×RA → RA satisfies
the positive correlation if, for any π0 ∈ RA, x0 ∈ ∆A,

π0 · v(π0, x0)

≥ 0 for any π0 ∈ RA, x0 ∈ ∆A;

> 0 if v(π0, x0) 6= 0.
(8)

In a homogeneous potential game, the positive correlation immediately implies that the homo-
geneous potential function increases over time until it reaches a stationary point, which is indeed a
Nash equilibrium by equilibrium stationarity, since the definition of the potential function implies

d
dt

f 0(x0) = D f 0(x0)ẋ0 = F0(x0) · ẋ0

≥ 0 for any x0 ∈ ∆A;

> 0 if vF0
(x0) 6= 0.

Thus, the homogeneous potential function f 0 works as a Lyapunov function commonly in these
evolutionary dynamics. Therefore, the positive correlation guarantees that the set of local max-
ima of f 0 is globally attracting and a strict local maximum is asymptotically stable (Sandholm,
2001). As a local maximum of the potential function is a Nash equilibrium, this implies global
convergence to the set of Nash equilibria.

In the heterogeneous setting, the positive correlation applies to positive correlation between
the payoffs and the action distribution among each type’s agents. Thus, by the same token as in a
homogeneous potential game, this implies in a heterogeneous potential game F that the heteroge-
neous potential function f works as a Lyapunov function in order to extend equilibrium stability.
Again, since a local maximum of f is a Bayesian equilibrium, the following theorem suggests
global convergence to the set of Bayesian equilibria, which include all the local maxima of f .

Theorem 5 (Stability of Bayesian equilibria in aggregate potential games). Suppose that mean dy-
namic v satisfies the best response stationarity (6) and the positive correlation (8). Then, in an aggregate
potential game F, the following holds.

i) The set of local maxima of f is globally attracting under vF; a local strict maximum of f is locally
asymptotically stable.

ii) Let x∗ be an isolated aggregate equilibrium in the sense that, in a neighborhood O∗ of the corresponding
strategy composition X∗ in the composition space X , there is no other equilibrium composition than
X∗. If x∗ is (locally) asymptotically stable, then it is a local strict maximum of f .

If a dynamic satisfies best response stationarity and the positive correlation, call it an admissi-
ble dynamic.

22See Sandholm (2010, Chapter 5) for summary of the relationship between dynamics and the two properties in this
section.
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Corollary 1. Assume Assumptions 1 to 3. Pairwise comparison target dynamics and exact optimization
dynamics are admissible dynamics.23 Therefore, a Bayesian equilibrium and a stationarity Bayesian strategy
are equivalent under these dynamics in any heterogeneous population games; besides, stability of Bayesian
equilibrium holds for these dynamics in heterogeneous potential games.

Combined with aggregability of the standrd BRD verified by Ely and Sandholm (2005), Theo-
rem 5 implies equivalence of local stability between (any) admissible dynamics—both aggregable
and nonaggregable—and the homogenized smooth BRD. In a potential game, once an (isolated)
Bayesian equilibrium is found to be locally stable in the heterogeneous standard BRD—or equiv-
alently, if the corresponding aggregate equilibrium is locally stable in the homogenized smooth
BRD, then its local stability is maintained in any admissible heterogeneous dynamics. Therefore,
despite nonaggregability in general, we can test local stability of a Bayesian equilibrium under an
arbitrary admissible heterogeneous dynamic just by examining the homogenized smooth BRD, as
long as we know that the aggregate game is a potential game.

Corollary 2 (General aggregability of local stability). Consider aggregate potential game F with type
distribution PΘ.

Let x̄∗ ∈ ∆A be an isolated aggregate equilibrium in the sense that, in a neighborhood Ō∗ of x̄∗

in the aggregate strategy space ∆A, there is no other aggregate equilibrium than x̄∗. Correspondingly,
let x∗ ∈ FX be the Bayesian equilibrium such that EΘx∗ = x̄∗. Then, the following statements are
equivalent:

i) x̄∗ is locally asymptotically stable under the homogenized smooth BRD.

ii) x∗ is a local strict maximum of the heterogeneous potential f .

iii) x∗ is locally asymptotically stable under a heterogeneous admissible dynamic.24

Example 8. Consider a (reduced) binary game A = {I, O} with negative externality: F0
I (x̄I) de-

creases with x̄I ∈ [0, 1]. Then, the potential function f 0 is strictly concave; due to the bounded
state space x̄I ∈ [0, 1] and strict concavity of f 0, the global maximum exists uniquely and there is
no other local maximum of f 0. The global maximum of f 0 is the only aggregate equilibrium of
this game. According to Theorem 2, this aggregate equilibrium is globally asymptotically stable
under any admissible heterogeneous dynamics.

For an example in microeconomic theory to fall into this class of games, consider an entry-
exit dynamic of producers in an industry. To make entry and exit symmetric, it is conventionally
assumed that fixed costs exist but they are not sunk: fixed costs are paid only to maintain pro-
duction capacities and they are revocable when the supplier becomes inactive. Further, the choice

23Observational dynamics such as the replicator dynamic (if x(θ) � 0 for almost all θ) and excess payoff dynamics
can be also included in Corollary 1.

24It is sufficient for the other conditions if it is locally asymptotically stable under some admissible heterogeneous
dynamic, while each of the other conditions implies locally asymptotically stability under any admissible heterogeneous
dynamics.
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of entry and exit is regarded as a “long-term” decision while the choice of quantity supplied is
a “short-term” decision (as well as the underlying consumers’ decisions on demands); thus, it is
commonly assumed that the market is settled to market equilibrium (demand equals to supply) at
each moment of time, given the mass (number) of active suppliers at the moment. A free-entry or
so-called “long run” equilibrium is defined in the homogeneous setting as a state in which gross
profit for an active producer is equal to the fixed entry cost.

One may want to introduce heterogeneity to the fixed costs; it not only sounds realistic but also
eliminates indeterminacy of individual choices at a free-entry equilibrium. Under heterogeneity in
fixed costs, a free-entry equilibrim should be redefined as a state in which all the active producers
have smaller fixed costs than the gross profit and all the inactive ones have greater fixed costs.

Under perfect competition in a standard setting as in Mas-Colell, Whinston, and Green (1995,
Section 10.F), instantaneous market-equilibrium profit of an active supplier decreases with the
number of active suppliers. We can regard F0

I (x̄I) as gross profit at this instantaneous competitive
equilibrium given the current mass x̄I of active suppliers and θO(ω) as the fixed costs of supplier
ω; then, the choice between entry and exit in perfect competition falls into the binary game with
negative externality.

Thanks to our stability result, we can justify a free-entry equilibrium as the globally stable state
in an evolutionary dynamic; indeed it is so strengthened to be stable in any admissible dynamics.
As argued in Zusai (2017b), the tBRD is considered as a version of the BRD in which a revising
agent pays a stochastic switching cost. Thus, the stability in the tBRD implies that, even if entry
and exit incur sunk costs to build or scrap the production capacity, the “long-run” equilibrium is
indeed the limit state under such an entry-exit dynamic.

By the same token, we can justify a free-entry equilibrium in the standard static monopolistic
competition model such as Dixit and Stiglitz (1977) as a dynamically stable state and under an
arbitrary admissible dynamic.

An application to dynamic implementation of the social optimum

Imagine a central planner whose goal is to maximize the total payoff

EΘ [F[x̄](θ) · x(θ)] = F0(x̄) · x̄ + EΘ [θ · x(θ)] with x̄ = EΘx.

To help the central planner achieve this goal, we introduce monetary payment to the agent’s
payoff: now a type-θ agent’s payoff from action i ∈ A is F̃T

i [x](θ) := Fi[x](θ) − Ti[x̄], where
T = (Ti)i∈A : ∆A → RA is a function to determine the monetary transfer (in terms of payoff) from
the agent to the planner for taking each action at state x ∈ FX . Sandholm (2002) proposes the
dynamic Pigouvian pricing such as

Ti[x̄] = − ∑
j∈A

x̄j
∂F0

j

∂x̄i
(x̄) for each x̄ ∈ ∆A.

Notice that this pricing scheme does not require the central planner to know the agents’ switching
rate functions, the type distribution, or even the current strategy composition.
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Strictly speaking, in a setting where there are finitely many payoff types, Sandholm (2002) ver-
ified that, with T being the above dynamic Pigovian pricing scheme, F̃T has a potential function
f̃ T being the sum of total payoffs over the society:

f̃ T(x) = EΘ [F[x̄](θ) · x(θ)] with x̄ = X(Θ).

In particular, if common payoff function F0 exhibits negative externality, f̃ T is concave and thus
the unique social optimum is achieved in the long run through this pricing scheme regardless of
the initial state. Thanks to Theorem 5 and corollary 2, now we can extend this claim to the games
with infinitely many payoff types.25

5.2 Comparison with homogenized smooth BRD in potential ASAGs

Theorem 5 implies that an aggregate strategy must converge to the set of aggregate equilibria in
a heterogeneous potential game even in nonaggregable dynamics. Recall that the binary game
in Example 7 is indeed a potential game, and we witnessed that aggregate strategy moves from
one aggregate equilibrium to another. Perhaps, one might feel hard to accord the positive result
in the above theorem and the negative result in this example. The key to understand this gap is
topological difference between Bayesian strategy and aggregate strategy. Here we highlight this
gap by assuming additive separability of payoff heterogeneity, which enables us to construct the
homogenized version of a potential function.

Extension of a homogeneous potential game to an ASAG

We extend a homogeneous potential game F0 to a heterogeneous aggregate game by keeping F0

as a common payoff function and introducing additively separable idiosyncratic payoffs θ just as
defined in (1). Then, this heterogeneous game is an aggregate potential game; we call it a potential
ASAG. The payoff perturbation adds a nonaggregable term to the potential function and indeed
makes its value vary with Bayesian strategy. Note that the additive separability of idiosyncratic
payoffs and continuity of f 0 imply Assumption 1.

Theorem 6 (Extension of a homogenous potential game to an ASAG). Consider the common payoff
function F0 that admits a homogeneous potential function f 0 : ∆A → R such that ∇ f 0 ≡ F0, and the
heterogeneous population game F derived from F0 by (1). Then, F is a potential game with a heterogeneous
potential function f given by26

f (x) = f 0(EΘx) + EΘ[θ · x(θ)]. (9)

25Sandholm (2005, p.903) speculated it by referring to Ely and Sandholm (2005), which allows us to reduce stability
in the heterogeneous standard BRD to the one in the homogenized smooth BRD. However, we have found that aggre-
gation is not an valid approach to other heterogeneous dynamics including the Smith dynamic, which is first proposed
and popularly used in transportation engineering.

26This function f appears in the study of evolutionary implementation by Sandholm (2005, Appendix A.3). But it is
only to characterize a Bayesian equilibrium as a solution of the KKT condition for local maxima and minima of f .
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Difference in topology and basin of attraction

A Lyapunov function allows us to summarize the dynamic on a multi-dimensional space into a
one-dimensional dynamic of the value of this scalar-valued function. In a potential game, the
potential function serves as a Lyapunov function. As we saw in Example 7, a heterogeneous
dynamic may behave differently from the homogenized smooth BRD and may even converge to a
different equilibrium, despite equivalence in local stable equilibria in Corollary 2. The difference
between these dynamics is clarified by looking at the difference in the Lyapunov functions that
represent these dynamics.

Hofbauer and Sandholm (2007) prove that, under the homogenized smooth BRD, the Lya-
punov function f̄ : X → R in a potential game is constructed as27

f̄ (x̄) := f 0(x̄) + min
π̄∈RA

(
EΘ[max

a∈A
(π̄a + θa)]− π̄ · x̄.

)
(10)

from the potential function f 0 : ∆A → R. We call f̃ the homogenized potential function, to
compare it with the heterogeneous potential function f . Actually, the next theorem states close
connection between f and f̄ .

Theorem 7 (Homoginized and heterogeneous potentials). Under Assumption 1, the following holds.

i) f̄ is an upper bound on f :
f̄ (EΘx) ≥ f (x) for any x ∈ FX .

ii) The equality f̄ (EΘx) = f (x) holds if and only if x is a Bayesian equilibrium.

iii) Let x̄∗ = EΘx∗. Then, x∗ attains a local strict maximum of f if and only if x̄∗ attains a local strict
maximum of f̄ .

Since a local maximum of f̄ coincides with the aggregate of a local maximum of f , one might
expect that f̄ increases when f increases toward the local maximum, as does in an admissible
dynamic. However, it does not. We need to be careful about difference in topology on the space
of strategy compositions and on the space of aggregate strategies, as illustrated in Figure 4.

Local stability of a Bayesian equilibrium and local maxima of the heterogeneous potential f
is defined on the space of Bayesian strategies, or more precisely the composition space X ; see
Theorem 10 in Appendix C. So, unless it is global, absorption to a local stable equilibrium needs
the Bayesian strategy to be close to the equilibrium. The second term in the heterogeneous po-
tential function (9) captures the negative entropy of the composition. With the aggregate strategy
fixed, the second term in f is maximized if the composition is completely sorted in the sense that,
for each action, given the idiosyncratic payoffs of other actions, there is a threshold value of id-
iosyncratic payoff of the action and all the agents who have a greater idiosyncratic payoff than

27If PΘ is a double exponent distribution with noise level µ and thus the homogenized smooth BRD reduces to a
logit dynamic, then the latter term becomes the entropy function −µ ∑a∈A x̄a ln x̄a.

28



x
∣EΘ x I− x̄ I

∣<ε

x I (θ
H
)

x I (θ
L
)

(a) In the space of aggregate strategy, an ε-neighborhood
of the aggregate strategy x̄∗ = EΘx∗ is the set of aggre-
gate strategies x̄ ∈ ∆2 such that |x̄− x̄∗|∞2 = max{|x̄I −
x̄∗I |, |x̄O − x̄∗O|} < ε, which reduces to |x̄I − x̄∗I | < ε.
In terms of Bayesian strategy x = (x(θH), x(θL)), this is
equivalent to |(xI(θ

H) + xI(θ
L))− (x∗I (θH) + x∗I (θL))| <

ε.

x I (θ
H
)

x I (θ
L
)

x

maxθ∈Θ∣x I (θ)− x̄ I
(θ)∣<ε

(b) In the space of strategy composition, an ε-
neighborhood of the Bayesian strategy x∗ is the set of
Bayesian strategies x = (x(θH), x(θL)) ∈ ∆2 × ∆2 such
that ‖x − x∗‖∞

A×Θ = max{|x(θH) − x∗(θH)|, |x(θL) −
x∗(θL)|} < ε, which reduces to max{|xI(θ

H) −
x∗I (θH)|, |xI(θ

L)− x∗I (θL)|} < ε/2.

Figure 4: Comparison of topology on the space of aggregate strategy and on the space of strategy composi-
tion. Here we consider a binary aggregate game with two types Θ = {θH , θL} and consider a neighborhood
of x∗; assume that the mass of agents of each type is just a half of the whole population.

the threshold take this action while the others do not.28 Actually, the strategy composition in a
Bayesian equilibrium (i.e., an equilibrium composition) is a completely sorted composition with
the aggregate strategy being in aggregate equilibrium.

The homogenized potential f̄ does not indeed serve as a Lyapunov function in nonaggregable
dynamics. Let x̄∗ be an isolated aggregate equilibrium. Then, f̄ attains a local maximum at x̄∗;
If the dynamic is aggregable, the aggregate strategy should stay there and f̄ should remain at
the local maximum, whenever aggregate strategy x̄ reaches x̄∗. But, if the underlying Bayesian
strategy x0 at time 0 is not a Bayesian equilibrium, Lemma 7 implies that f (x0) < f̄ (x̄∗) = f (x∗)
where x∗ is the corresponding Bayesian equilibrium. Hence, the heterogeneous potential f is not
maximized at x0 even locally; actually a change in the Bayesian strategy toward x∗ while keeping
x̄ = EΘx increases the value of f . As f is indeed a strictly increasing Lyapunov function on FX
under a Bayesian dynamic, the fact that f is not maximized at x0 implies that f still increases over
time. So x leaves x0. On the other hand, since f̄ is locally maximized at x̄∗ = EΘx0, any move from
x0 decreases f̄ at least temporarily. Therefore, the homogenized potential f̄ does not tell whether
x̄ is settled to equilibrium or not; thus f̄ is not a Lyapunov function for the dynamic of aggregate
strategy in the heterogeneous setting.

28It is indeed the Bayesian strategy that achieves the minimum in the second term of (10) to define the homogenized
potential f̄ . See the proof of Lemma 7.
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6 Observational dynamics

In some of major evolutionary dynamics, an agent observes other agents’ actions and the obser-
vation influences the switching decision—for example, an agent may imitate other agents’ actions
or the switching rate may depend on the relative payoffs compared to the average payoff of the
observed population. We can generalize these dynamics as observational dynamics by having the
action distribution among observed agents x̃ ∈ ∆A, not only on payoff vector π ∈ RA, in the
argument of the switching rate function R.

Example 9. In a class of excess payoff dynamics, a revising agent calculates the average payoff
x̃ ·π and switches to action j with the rate that increases with the excess payoff of the new action
πj − x̃ · π. In particular, the switching rate function Rij(π, x̃) = [πj − x̃ · π]+ defines the Brown-
von Neumann-Nash (BNN) dynamic (Hofbauer, 2001).

Example 10. In a class of imitative dynamics, a revising agent randomly picks another agent and
switches to the observed agent’s action j with the rate Iij(π) ∈ R+: the overall switching rate
is Rij(π, x̃) = x̃j Iij(π). There are several imitative protocols that yield the replicator dynamic
(Taylor and Jonker, 1978): imitative pairwise comparison Iij = [πj − πi]+ (Schlag, 1998), imitation
driven by dissatisfaction Iij = D− πi with constant D ∈ R (Björnerstedt and Weibull, 1996), and
imitation of success Iij = πj − S with constant S ∈ R (Hofbauer, 1995a).29

They fall into continuous dynamics and satisfy Assumption 2.30 (Note that Assumption 3 is
not needed for continuous dynamics.) Nonaggregability is still confirmed by Theorem 2 for both
excess payoff dynamics and imitative dynamics, since the switching rate function Rij is a strictly
increasing function of the payoff gain from switch.31

We can readily extend all the positive results, i.e., Theorems 1, 4 and 5 and corollary 2, to obser-
vational dynamics, if we assume that an agent observes the action distribution of the same type: a
type-θ agent observes x(θ) ∈ ∆A.32 This assumption of within-type observability matches with an
assumption on imitative dynamics of the society of finitely many subpopulations where a mem-
ber of each subpopulation imitates the behavior of those in the same subpopulation. The proofs
of these theorems in Appendices are indeed written explicitly to include x(θ) as an argument of
switching rate function R.

29Sawa and Zusai (2014) verify that any long-run outcome in imitative dynamics is robust to heterogeneity in “as-
piration levels,” such as D or S. This extends to payoff heterogeneity.

30Precisely for observational dynamics, R̄ is an upper bound on Rij(F[m̄](θ), m(θ)).
31As the easiest case, consider a binary aggregate game and let every agent observe x̃ = x̄; thus every agent faces

the same action distribution of samples. The unconditional total switching rate RIO + ROI increases with π∗ − π · x̄
in excess payoff dynamics. For imitative dynamics, the payoff monotonicity of Rij is implied by that of Iij and indeed
satisfied by any of the three protocols that induce the replicator dynamic. While allowing only finitely many types
of agents, Zusai (2016) proves that stability of Nash equilibrium in a contractive game is retained in the presence of
heterogeneity in payoffs and revision protocols as long as agents follow excess payoff dynamics or admissible non-
observational dynamics.

32Corollary 1 holds for excess payoff dynamics. Imitative dynamics such as the replicator dynamic satisfy the best
response stationarity only if x0 is in the interior of ∆A, and thus these corollaries hold for imitative dynamics only in
the interior of FX .
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To maintain existence of a unique solution trajectory (Theorem 1) and stationarity of Bayesian
equilibrium (Theorem 4), this assumption of within-type observability can be replaced with an
alternative assumption that an agent observes the aggregate strategy x̄ instead of x(θ). But, then
the positive correlation (Theorem 5) may not be extended from the homogeneous setting to the
heterogeneous setting. If the type of other agents are not distinguishable for an agent and ob-
servations are sampled from the entire population, stability analysis becomes essentially different
from how we have investigated stability in this paper.33

7 Concluding remarks

In this paper, we extend evolutionary dynamics to allow (possibly) continuously many payoff
types and persistent payoff heterogeneity. With rigorous formulation as a dynamic in the space
of probability measure, we verify the existence of a unique solution path from an arbitrary ini-
tial state. Nonaggregability is presented for a general class of evolutionary dynamics, including
pairwise comparison dynamics, tempered BRDs, excess payoff dynamics and imitative dynam-
ics. When payoff heterogeneity is persistent, such a dynamic may leave an aggregate equilibrium
even if it is stable when the heterogeneity was only transitional. Yet, we can retain stationarity
of equilibrium by switching the attention to strategy composition, i.e., the joint distribution of
types and actions. Moreover, in a potential game, the set of locally stable equilibria in any of such
heterogeneous dynamic coincides with that in the homogenized smooth BRD, whose aggregate
dynamic is independent of the strategy composition over different types.

In applications to dynamic implementation of the social optimum, dependency of aggregate
dynamic on the underlying composition suggests that a bang-bang control results in excessive in-
stability generally in the heterogeneous setting, though it achieves the fastest convergence in the
homogeneous setting. Yet, the dynamic Pigouvian pricing, proposed by Sandholm (2005, 2002),
still guarantees convergence to the social optimum, while not requiring any ex-ante information
about the underlying dynamic or type distribution. Nevertheless, there might be some better
scheme that lies between bang-bang controls and the dynamic Pigovian pricing and achieves
faster convergence than the Pigovian pricing while not requiring too much information. Actu-
ally, nonaggregability also suggests that the direction of transition in aggregate state is related
with the underlying strategy composition. If we can find a way to extract the information of the
strategy composition from the transition of the aggregate state, it could be used to improve the
pricing scheme.34

33About unobservable heterogeneity in aspiration levels in imitative dynamics, Sawa and Zusai (2014) verify that,
although the dynamic becomes more complicated and basic properties such as positive correlation do not hold, long-
run limit outcomes are robust to the introduction of unobservable heterogeneity. For nonobservational dynamics, Zusai
(2016) widely extends Nash stability in contractive (stable/negative definite) games and local stability of a (regular)
evolutionary stable state to allow unobservable heterogeneity both in payoff functions and switching rate functions,
assuming finitely many types and paying attentions to “gains” from revising an action.

34In the situation where payoff heterogeneity is not additively separable and the social planner does not exactly
know its distribution, Fujishima (2012) proposes a modified Pigouvian pricing that is combined with estimation of the
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However, in the heterogeneous dynamics, it depends on the initial composition—not only on
the aggregate strategy—which aggregate equilibrium is eventually reached in the long run from a
given initial state. Now we know that, under a non-aggregable dynamic, the aggregate strategy
may escape even from an aggregate equilibrium that is stable under an aggregable dynamic. How-
ever, in a potential function, this does not change the set of locally stable equilibria. Therefore, we
can use nonaggrgability to select equilibria by requiring robustness of stability to any unsorted
distortion in strategy composition. Zusai (2017a) explores this idea by presenting more detailed
analysis of nonaggregability and developing the idea of robust critical mass that we briefly men-
tioned in Section 4, while focusing on a binary ASAG.
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A Appendix to Sections 2–3

A.1 Measure-theoretic definition of Bayesian strategy

This subsection provides mathematically rigorous definition of Bayesian strategy based on mea-
sure theory. Proofs in appendices deal with strategy compositions to properly utilize the Lya-
punov stability theorem (Theorem 10 in Appendix C) and borrow the measure-theoretic construc-
tion of continuous space evolutionary dynamics such as in Oechssler and Riedel (2001, 2002) and
Cheung (2014).

Combination of action profile a : Ω→ A and type profile θ : Ω→ Θ generates a finite measure
Xa : BΘ → R+ for each a ∈ A from PΩ:

Xa(BΘ) := PΩ({ω ∈ Ω : a(ω) = a and θ(ω) ∈ BΘ}) for each BΘ ∈ BΘ.

Xa(BΘ) represents the mass of action-a players whose types are in set BΘ. Xa is dominated by PΘ,
denoted by Xa � PΘ, in the sense that

PΘ(BΘ) = 0 =⇒ Xa(BΘ) = 0 for each BΘ ∈ BΘ. (A.1)

It follows by Radon-Nikodym theorem that there exists a BΘ-measurable nonnegative function
xa : Θ→ R+ such that

Xa(BΘ) =
∫

BΘ

xa(θ)PΘ(dθ) for any BΘ ∈ BΘ.

xa is the density function of measure Xa. The density is determined uniquely in the sense that, if
another measurable function x′a satisfies Xa(BΘ) =

∫
BΘ

x′a(θ)PΘ(dθ) for all BΘ ∈ BΘ, then x′a(θ) =
xa(θ) for PΘ-almost all θ ∈ Θ.

The distribution of strategies over different types is represented by X = (Xa)a∈A : BΘ →
∆A, which we call strategy composition. We can see this vector measure as a joint probability
measure over the product space A×Θ. 35 Let X be the set of strategy compositions, i.e., the set
of probability measures over A×Θ that is dominated by PΘ in the above sense.

The Radon-Nikodym density x = (xa)a∈A : Θ → RA
+ is the Bayesian strategy corresponding to

X. We represent the relationship between X = (Xa)a∈A and x = (xa)a∈A as in the above integral
equation by X =

∫
xdPΘ. From the fact that ∑a∈A Xa(BΘ) = PΘ(BΘ) and Xa(BΘ) ≥ 0 for any BΘ

and a ∈ A, we can confirm that x(θ) is a probability vector for almost all types:

x(θ) ∈ ∆A for PΘ-almost all θ ∈ Θ.

A Bayesian strategy is (PΘ-almost) uniquely determined from a strategy composition by Radon-
Nikodym theorem, and vice versa. So, X is equivalent to the set of Bayesian strategies FX .

35With abuse of notation, we could say that X defines the measure of a Borel set BA×Θ on the product space A×Θ
by

X(BA×Θ) := ∑
a∈A

Xa({θ ∈ Θ : (a, θ) ∈ BA×Θ}) = PΩ({ω ∈ Ω : (a(ω), θ(ω)) ∈ BA×Θ}).
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We call strategy composition X ∈ X an equilibrium composition, if

PΘ(β−1
a (x̄) ∩ BΘ) ≤ Xa(BΘ) ≤ PΘ(b−1

a (x̄) ∩ BΘ) with x̄ = X(Θ) (A.2)

for all a ∈ A and BΘ ∈ BΘ. This condition is obtained by aggregation of Bayesian equilibrium
condition (2) on xa(θ) over θ ∈ BΘ. Among types in BΘ, all those who have a as the unique best
response must choose this action a in equilibrium and thus Xa(BΘ) must be at least PΘ(β−1

a (x̄) ∩
BΘ). On the other hand, those who have a as one of the best responses may or may not add to
action-a players and thus Xa(BΘ) is at most PΘ(b−1

a (x̄)∩ BΘ). X being an equilibrium composition
(A.2) is equivalent to its density x being a Bayesian equilibrium (2).

A.2 Topology of the space of strategy compositions

Choice of topology is a sensitive issue when we argue dynamic of probability measure on a contin-
uous space. We follow the convention in the literature on evolutionary dynamics on a continuous
strategy space, such as in Cheung (2014). That is, we use strong topology for existence of a solution
path and weak topology for stability of equilibrium composition.

Below we define these two topologies on the space of finite signed measuresMA×Θ. Note that
X ⊂ MA×Θ and thatMA×Θ is the tangent space of X . This spaceMA×Θ is a vector space and a
transition vector stays in this extended (tangent) space.

Strong topology is metrized by the variational norm ‖ · ‖∞
A×Θ defined as

‖M‖∞
A×Θ = sup

g

{∣∣∣∣∣∑a∈A
∫

θ∈Θ
ga(θ)Ma(dθ)

∣∣∣∣∣ : sup
(a,θ)∈A×Θ

|ga(θ)| ≤ 1

}
,

where the first sup is taken over the set of measurable functions g on (A×Θ,BA×Θ). On the other
hand, a Bayesian strategy belongs to FX , the space of BΘ-measurable vector function from Θ to
∆A. Note that, if M � PΘ, then there uniquely exists a Radon-Nikodym density m ∈ FX such
that M =

∫
mdPΘ in the sense we defined in Appendix A.1. The theorem below suggests that the

variational norm on X is equivalent to the L1-norm on FX .36 The proof is provided in Section S2.1
of Supplementary Note.37

Theorem 8. For any finite signed measure M ∈ MA×Θ with density m = (ms)s∈A, we have

‖M‖∞
A×Θ = ∑

a∈A
EΘ|ma| = ∑

a∈A

∫
Θ
|ma(θ)|PΘ(dθ). (A.3)

With the variational norm, the normed vector space (MA×Θ, ‖ · ‖∞
A×Θ) is a Banach space; but

not with weak topology. By Zeidler (1986, Cor. 3.9), boundedness and Lipschitz continuity of
the dynamic in strong topology guarantees the existence and uniqueness of a solution path of the
dynamic. See Theorem 9 in Appendix A.3.

36Ely and Sandholm (2005) define the standard BRD under payoff heterogeneity directly as a dynamic of x and
adopt L1 norm.

37This density-based formula of the variational norm comes essentially from Theorem 5 in Oechssler and Riedel
(2001).
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Under weak topology on the set of measures over space S , a mapping fromM(S)→ R such
as µ 7→

∫
S f dµ is continuous for any bounded and continuous function f : S → R. In our model,

the space S := A×Θ is separable with metric dA×Θ : (A×Θ)2 → R+ such that38

dA×Θ((a, θ), (a′, θ′)) := 1{a 6= a′}+ |θ− θ′|∞A .

Then, weak topology is metrized by Prokhorov metric dM :MA×Θ
2 → R+ such that39

dM(M, M′) := inf{ε > 0 : M(BA×Θ) ≤ M′(Bε
A×Θ) + ε

and M′(BA×Θ) ≤ M(Bε
A×Θ) + ε for all BA×Θ ∈ BA×Θ},

where Bε
A×Θ is defined from BA×Θ as Bε

A×Θ := {(a, θ) ∈ A × Θ : dA×Θ((a, θ), (a′, θ′)) <

ε with some (a′, θ′) ∈ BA×Θ}.40 Under the weak topology, the space of probability measures, i.e.,
the space of strategy compositions becomes compact. Then, we can apply the Lyapunov stability
theorem, as in Cheung (2014, Thm. 6). See Theorem 10 in Appendix C.

A.3 Sketch of Proof of Theorem 1

We prove existence of a unique solution trajectory of a Bayesian dynamic by verifying it for the
corresponding dynamic of strategy composition, appealing to the equivalence between Bayesian
strategies and strategy compositions. Here we sketch the outline of the proof, while the complete
presentation of the proof is provided in Section S2.2 of Supplementary Note.41

First, we define the mean dynamic of strategy composition V = (Vi)i∈A : X × CΘ → MA×Θ

from the Bayesian mean dynamic (4) as

Ẋi(BΘ) = Vi[X, π](BΘ) =
∫

BΘ

vi[π(θ), x(θ)]PΘ(dθ)

=
∫

BΘ
∑
j∈A

Rji(π(θ), x(θ))Xj(dθ)−
∫

BΘ

{
∑
j∈A

Rij(π(θ), x(θ))

}
Xi(dθ) (A.4)

for each BΘ ∈ BΘ, given strategy composition X ∈ X and payoff function π : Θ → RA. In short,
we write Ẋ = V[X, π].

In a population game F : ∆A × Θ → RA, the mean dynamic (A.4) of strategy composition
defines an autonomous dynamic VF over X by

Ẋ = VF[X] := V[X, F[X(Θ)]] ∈ MA×Θ

38The metric dA×Θ is a product metric constructed from the discrete norm on A and the sup norm on Θ ⊂ RA.
Notice A < ∞; so the product metric dA×Θ makes A×Θ separable. Here 1{a 6= a′} is an indicator function and takes
1 if a 6= a′ and 0 otherwise.

39If there is no payoff heterogeneity, i.e., Θ = {θ0}, then composition M can be simply represented by an A-
dimensional vector (m̄a)a∈A ∈ RA such that m̄a = Ma({θ0}). Then, dM(M, M′) = ε is equivalent to supa∈A |m̄a −
m̄a′ | = ε. So the metric dM reduces to the sup norm on RA.

40If ε < 1, the condition for (a, θ) ∈ Bε
A×Θ is equivalent to the existence of θ′ ∈ Θ such that |θ− θ′|∞A < ε and

(a, θ′) ∈ BA×Θ.
41Basically this proof follows the proof of Lipschitz continuity of a continuous-strategy evolutionary dynamic, as

in Cheung (2014): both deal with the dynamic of probability measure on a (possibly) continuous space. However,
there are two technical differences: the need for Lebesgue decomposition of an arbitrary finite signed measure and the
discontinuity of switching rates in exact optimization protocols. See footnotes 43 and 47.
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for each strategy composition X ∈ X . Then, VF[X](BΘ) =
∫

BΘ
vF[x](θ)PΘ(dθ), where x is the

corresponding Bayesian strategy, i.e., the Radon-Nikodym density of X. Theorem 8 suggests that
Lipschitz continuity of vF in L1-norm is equivalent to Lipschitz continuity of VF in the variational
norm

To argue unique existence of a solution trajectory, we exploit the known result on a Lipschitz
continuous dynamic in a Banach space as in the theorem below.42

Theorem 9 (Zeidler, 1986: Corollary 3.9). Consider a dynamic ż = V(z) with V : Z → Z . If the space
Z is a Banach space and the dynamic V is Lipschitz continuous and bounded, then there exists a unique
solution {zt}t∈R+ from any initial state in z0 ∈ Z .

For this, we need a Banach space. But, the space of strategy composition X is not a vector
space. Thus, we extend the dynamic to the space of finite signed measuresMA×Θ. Since the mean
dynamic V[X, π](BΘ) is defined as the aggregate transition of Bayesian strategy, i.e., the density of
X over types in BΘ, we still need a density of a measure on this extended space. However, a finite
signed measure may not be absolute continuous with respect to the type distribution PΘ. We use
the Lebesgue decomposition theorem (Lemma 1 in Supplementary Note) to extract the absolute
continuous part:43 a finite signed measure M is decomposed to a PΘ-absolute continuous measure
M̃ � PΘ and the orthogonal part M̂ ⊥ PΘ.44 The absolutely continuous part M̃ has density m̃
with respect to PΘ. Let M̃A×Θ be the space of PΘ-absolute continuous measures. Besides, the
orthogonality of M̂ implies ‖M̃‖ ≤ ‖M‖.

Yet, a density function m̃ of M̃ may not be bounded, while that of a strategy composition, i.e., a
Bayesian strategy x is bounded in the sense that x(θ) of almost every type θ belongs to a bounded
set ∆A. As we will utilize the assumptions that the payoff function and the switching rate function
(the conditional switch rate function Q·· for exact optimization dynamics) are continuous and
thus bounded if its domain is restricted to a compact set, we truncate m̃ by a rounding function
µ = (µj)j∈A : RA → [−3, 3]A such that µ(z) = z if z ∈ ∆A and µ is Lipschitz continuous with
constant Lµ.45

42Ely and Sandholm (2005, Theorem A.3.) also guarantee the existence of a unique solution trajectory for a Bayesian
dynamic on FX with L1-norm from Lipschitz continuity of the dynamic.

43This need for Lebesgue decomposition is the first difference from evolutionary dynamics on a continuous strategy
space, which can be directly defined for the transition of a probability measure—a strategy distribution over the con-
tinuous strategy space—without having a density. It comes from the difference in an individual agent’s characteristic
and decision between these two kinds of (possibly) continuous evolutionary dynamics. In our heterogeneous evolu-
tionary dynamics, an agent is characterized by its type—the type of an agent never changes and the type affects the
switching rate through payoff heterogeneity: the first nature implies PΘ � X and the second nature makes it indeed
natural to construct the dynamic from describing the switches of each type of agents and thus defining the transition
of a Bayesian strategy, namely the density function. On the other hand, in continuous-strategy evolution dynamics, an
agent is assumed to be homogeneous and thus has no inherited characteristic; thus there is no ad hoc distribution that
should dominate the strategy distribution.

44Orthogonality of M̂ = (M̂a)a∈A ∈ MA×Θ, i.e., M̂ ⊥ PΘ means that, for each a ∈ A, there exists Ea ∈ BΘ such
that M̂a(BΘ ∩ Ea) = 0 and PΘ(BΘ \ Ea) = 0 for any BΘ ∈ BΘ.

45For example, define µ0 : R → [−3, 3] such as µ0(z) := −3 + exp(z + 2) for z < −2, µ0(z) := z for z ∈ [−2, 2] and
µ0(z) := 3− exp(2− z) for z > 2. Then, define vector function µ = (µa)a∈A by µa(z) = µ0(za) for each a ∈ A and
z ∈ ∆A.
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Then, we redefine the function vF : M̃A×Θ ×Θ→ R on the extended domain by

vF
i [M̃](θ) := ∑

j∈A
Rji(F[µ(M̃(Θ))](θ), µ(m̃(θ)))µj(m̃(θ))

− ∑
j∈A

Rij(F[µ(M̃(Θ))](θ), µ(m̃(θ)))µi(m̃(θ))

for each i ∈ A and any PΘ-absolute continuous finite signed vector measure M̃ ∈ M̃A×Θ. Here
m̃ is the Radon-Nikodym density of M̃. This leads to the extension of VF := (VF

i )i∈A toMA×Θ,
such as

VF
i [M](BΘ) =

∫
BΘ

vF
i [M̃](θ)PΘ(dθ) for any BΘ ∈ BΘ

for each i ∈ A and any finite signed vector measure M ∈ MA×Θ, where M̃ is the PΘ-absolute
continuous part of M in the Lebesgue decomposition of M. As only this part matters to the value
of VF, we have VF[M] = VF[M̃].

To prove Lipschitz continuity of VF, we first look at VF on M̃A×Θ: in Supplementary Note
S2.2, we find LF

V > 0 such that46

‖VF[M̃]−VF[M̃′]‖ ≤ LF
V‖M̃− M̃′‖ for any M̃, M̃′ ∈ M̃A×Θ. (A.5)

Then, this implies Lipschitz continuity over the whole spaceMA×Θ, because ‖M̃− M̃′‖ ≤ ‖M−
M′‖ for any M = M̃ + M̂, M′ = M̃′ + M̂′ ∈ MA×Θ.

For continuous dynamics, the Lipschitz continuity of VF is a natural consequence of the Lips-
chitz continuity of the switching rate function R and of the common payoff function F0.

On the other hand, the exact optimization protocol is not discontinuous.47 In particular to the
Lipschitz continuity of VF, the types who switch the best response actions when the strategy com-
position changes from M̃ to M̃′ should experience discontinuous change in the switching rates.
However, this discontinuous change in their switching rates is bounded thanks to the bounded-
ness of the switching rate function R. Further, thanks to Assumption 3, the mass of agents who
belong to such types expands only (Lipschitz) continuously with the change in the composition.48

As a result, the aggregate change in their revision rates grows only continuously.

46Here the norm ‖ · ‖ is the variational norm, defined in Appendix A.2.
47This discontinuity in exact optimization dynamics is the second difference from the preceding studies on evolu-

tionary dynamics on continuous strategy space, since these consider the dynamics with continuous switching rates,
e.g., the replicator dynamic (Oechssler and Riedel, 2001), the BNN dynamic (Hofbauer, Oechssler, and Riedel, 2009),
the gradient dynamic (Friedman and Ostrov, 2013), payoff comparison dynamics (Cheung, 2014) and the logit dynamic
(Lahkar and Riedel, 2015). Here, we suppress discontinuity in switching rates by continuity in the mass of agents who
experience discontinuous change in switching rates. This is done by adding Assumption 3, i.e., continuity of type dis-
tribution. This continuity mitigates discontinuity in switching rates and retains continuity of the dynamic, thanks to
the construction of our dynamic that implies PΘ � X as argued in footnote 43.

48Note that this assumption also restricts the mass of types who have multiple best responses to be a null set (zero
measure) in PΘ.
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B Appendix to Section 4

B.1 Proof of Theorem 2

Henceforth, we let R0
ij(θ) := R0

ij(F[x̄](θ)) and R̂0
ij(θ) = R0

ij(θ) − EΘR0
ij. Likewise, let X̂i(Θ̃) =

Xi(Θ̃)− x̄iPΘ(dθ).
First of all, recall the Bayesian dynamic:

ẋi(θ) = ∑
j 6=i

xj(θ)R0
ji(θ)− xi(θ)∑

j 6=i
R0

ij(θ).

Aggregating this over all θ, we obtain transition of the aggregate strategy:

˙̄xi = ∑
j 6=i

{∫
Θ

R0
ji(θ)Xj(dθ)−

∫
Θ

R0
ji(θ)Xi(dθ)

}
= ∑

j 6=i

{
x̄jEΘRji − x̄iEΘRij +

∫
Θ

R̂ji(θ)X̂j(dθ)−
∫

Θ
R̂ij(θ)X̂i(dθ)

}
Since X̂i = −∑k 6=i X̂k, the third term can be rearranged as

−∑
j 6=i

∫
Θ

R̂ij(θ)X̂i(dθ) = ∑
j 6=i

∑
k 6=i

∫
Θ

R̂ij(θ)X̂k(dθ) = ∑
j 6=i

∑
k 6=i

∫
Θ

R̂ik(θ)X̂j(dθ).

Therefore, we have

˙̄xi = ∑
j 6=i

(x̄jEΘRji − x̄iEΘRij) + ∑
j 6=i

∫
Θ
{R̂ji(θ) + ∑

k 6=i
R̂ik(θ)}X̂j(dθ).

The first term is wholly determined only from the aggregate strategy. It is indeed the transition
of the aggregate strategy if the switching rate is constant. The second term is the correlation
between the unconditional total switching rate Rji + ∑k 6=i Rik and the strategy composition Xj. If
the unconditional total switching rate varies with types, the transition of the aggregate strategy
differs with strategy composition through the difference in this correlation term, as we see below.

Proof. Suppose that there exists a pair of two distinctive actions i, j such that x̄j > 0 and the
variation of R0

ji(θ)+∑k 6=i R0
ik(θ) is not zero. This implies existence of Θ+ ⊂ Θ such that PΘ(Θ+) >

0 and
R̂0

ji(θ) + ∑
k 6=i

R̂0
ik(θ) > 0 for all θ ∈ Θ+

and existence of Θ− ⊂ Θ such that PΘ(Θ−) > 0 and

R̂0
ji(θ) + ∑

k 6=i
R̂0

ik(θ) < 0 for all θ ∈ Θ−.

Note that PΘ(Θ+) ≤ 1−PΘ(Θ−) < 1 and similarly PΘ(Θ+) < 1.
Given non-pure aggregate strategy x̄, we can find ε such that ε = 0.5 min{x̄j, 1 − x̄i} > 0.

Define X+ by

X+
i (Θ̃) = (x̄i + ε)PΘ(Θ̃)− ε

PΘ(Θ̃ ∩Θ+)

PΘ(Θ+),
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X+
j (Θ̃) = (x̄j − ε)PΘ(Θ̃) + ε

PΘ(Θ̃ ∩Θ+)

PΘ(Θ+),

X+
k (Θ̃) = x̄kPΘ(Θ̃) for all k 6= i, j.

for each PΘ-measurable set Θ̃ ⊂ Θ.
Then, the correlation term reduces to∫

Θ
{R̂0

ji(θ) + ∑
k 6=i

R̂0
ik(θ)}X̂+

j (dθ) = ε

(
1

PΘ(Θ+)
− 1
) ∫

Θ+
{R̂0

ji(θ) + ∑
k 6=i

R̂0
ik(θ)}PΘ(dθ) > 0.

Therefore, from this strategy composition X+, the transition of the aggregate strategy is

x̄i > ∑
j 6=i

(x̄jEΘRji − x̄iEΘRij).

We define X− by

X−i (Θ̃) = (x̄i + ε)PΘ(Θ̃)− ε
PΘ(Θ̃ ∩Θ−)

PΘ(Θ−),

X−j (Θ̃) = (x̄j − ε)PΘ(Θ̃) + ε
PΘ(Θ̃ ∩Θ−)

PΘ(Θ−),

X−k (Θ̃) = x̄kPΘ(Θ̃) for all k 6= i, j.

for each PΘ-measurable set Θ̃ ⊂ Θ. Then, similarly to the above calculation, we obtain the nega-
tive correlation and

x̄i < ∑
j 6=i

(x̄jEΘRji − x̄iEΘRij).

B.2 Proof of Theorem 3

Proof. Let R̂0 := RIO(F[x̄∗I ](θ̂0
O)) and R0 = ROI(F[x̄∗I ](θO)); then, r = R0/R̂0.

i) Consider an arbitrary type θO > θ̂0
O. At period 0, while every agent of this type is taking

action I in the reversed composition, this type’s best response is O and the payoff gain from switch
is θO − F0(x̄∗I ) > θ̂0

O − F0(x̄∗I ). Thus, the agent switches from I to O at rate RIO(F[x̄∗I ](θO)) ≥
RIO(F[x̄∗I ](θ̂0

O)) = R̂0 by payoff monotonicity of RIO. Therefore, at period 0, the transition of
xI,t(θO) follows

ẋI,0(θO) = −RIO(F[x̄∗I ](θO))xI,0(θO) ≤ −R̂0 for all θO > θ̂0
O.

For any type θO ∈ (θ∗O, θ̂0
O], the best response is O at period 0 since θO > θ∗O = F0(x̄∗I ). All

agents of this type is taking action O at this period. So they do not switch at period 0 and xI,t(θO)

of this type remains unchanged at period 0:

ẋI,0(θO) = 0 for all θO ∈ (θ∗O, θ̂0
O].

Consider an arbitrary type θO ≤ θ∗O. At period 0, while every agent of this type is taking action
O in the reversed composition, this type’s best response is I and the payoff gain from switch
is F0(x̄∗I ) − θO ≤ F0(x̄∗I ) − θO. Thus, the agent switches from O to I at rate ROI(F[x̄∗I ](θO)) ≤
ROI(F[x̄∗I ](θO)) = R0 by payoff monotonicity of ROI . Therefore, at period 0, the transition of
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xI,t(θO) follows

ẋI,0(θO) = ROI(F[x̄∗I ](θO))xO,0(θO) ≤ R0 for all θO ≤ θ∗O.

Aggregating ẋI,0(θO) over all types, we obtain the transition of the aggregate strategy:

˙̄xI,0 =
∫

Θ
ẋI,0(θO)PΘ(dθO)

≤ −R̂0PΘ({θO : θO ≥ θ̂0
O}) + R0PΘ({θO : θO ≤ θ∗O})

= −x̄∗I (R̂0 − R0) = −(1− r)x̄∗I R̂0.

The second equality comes from PΘ({θO : θO > θ̂0
O}) = 1− P(θ0

O) = x̄∗I = PΘ(θ
∗
O) = PΘ({θO :

θO ≤ θ∗O}). The last line comes from r = R0/R̂0. Since x̄∗I is assumed to be positive and the payoff
monotonicity implies R̂0 = RIOF[x̄∗I ](θ̂0

O)) > 0 by θ̂0
O > θ∗O = F0(x̄∗I ), we have ˙̄xI,0 < 0 if r < 1.

ii) Since F0
I increases with x̄I , we have F0

I (x̄I,t) ≤ F0
I (x̄∗I ) = θ∗O as long as x̄I,t ≤ x̄∗I . Under such

aggregate strategy x̄I ≤ x̄∗I , the best response for an arbitrary type θO > θ∗O remains to be action
O. Therefore, the transition of xI,t for type θO > θ̂0

O still follows

ẋI,t(θO) = −RIO(F[x̄I,t](θO))xI,t(θO) ≤ −R̂0xI,t(θO) for all θO > θ̂0
O.

The inequality is implied by payoff monotonicity, since the payoff gain is θO − F0(x̄I,t) ≥ θO −
F0(x̄∗I ) > θ̂0

O − F0(x̄∗I ). Therefore, xI,t(θO) follows

xI,t(θO) ≤ exp(−RIO(F[x̄∗I ](θ̂0
O)t)xI,0(θO) ≤ exp(−RIO(F[x̄∗I ](θ̂0

O)t) for all θO > θ̂0
O.

Since all the agents of type θO ∈ (θ∗O, θ̂0
O] are taking the best response action O, there is no change

in their actions:
xI,t(θO) = 0 for all θO ∈ (θ∗O, θ̂0

O].

On the other hand, the best response for type θO ≤ θ∗O may change from I to O. If it changes,
ẋI,t(θO) ≤ 0. Even while I is still the best response, the payoff gain decreases as F0(x̄I,t) −
θO < F0(x̄∗I ) − θO ≤ F0(x̄∗I ) − θO. Thus, the switching rate from O to I is still bounded by
ROI(F[x̄I,t](θO)) ≤ ROI(F[x̄∗I ](θO)) = R0. Therefore, in both cases, the transition of xI,t(θO) satis-
fies

ẋI,t(θO) ≤ R0xO,t(θO)

and thus we have

xI,t(θO) ≤
{

1− exp(−R0t)
}

xI,0(θO) = 1− exp(−R0t) for all θO ≤ θ∗O.

Aggregating xI,t(θO) over all types, we obtain the aggregate strategy:

x̄I,t =
∫

Θ
xI,t(θO)PΘ(dθO)

≤ exp(−θ̂0
Ot)PΘ({θO : θO ≥ θ̂0

O}) +
{

1− exp(−R0t)
}

PΘ({θO : θO ≤ θ∗O})

= x̄∗I
{

exp(−θ̂0
Ot) + 1− exp(−R0t)

}
=: ¯̄xI,t.
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Notice that ¯̄xI,0 = x̄∗I ; further, r < 1 implies that ¯̄xI,t < x̄∗I for all t ∈ (0, ∞) and

d ¯̄xI,t

dt
= x̄∗I

{
−θ̂0

O exp(−θ̂0
Ot) + R0 exp(−R0t)

}

< 0 if t < T

= 0 if t = T

> 0 if t > T.

At time T, this upper bound reaches¯̄xI,T = x̄∗I (1− (1− r)rr/(1−r)) < x̄∗I . Since x̄I,T ≤ ¯̄xI,T < x̄∗I =

x̄I,0 and x̄I,t is continuous in t, it must have hit ¯̄xI,T at some t ∈ (0, T].
The above calculation presumes x̄I,t ≤ x̄∗I . From part i), we find this holds when t is close to

0. Suppose that x̄I,t come back to x̄∗I at some later t < ∞ and let T′ > 0 be the first time such
that x̄I,T′ = x̄∗I . Then, since x̄I,t ≤ x̄∗I for all t ∈ [0, T′], the above calculation holds thus we have
x̄I,t ≤ ¯̄xI,t for all t ∈ [0, T′]. In particular, we have x̄I,T′ = x̄∗I ≤ ¯̄xI,T′ . However, this contradicts
with ¯̄xI,t < x̄∗I for all t < ∞. Therefore, x̄I,t never come back to x̄∗I in finite time and thus the
presumption x̄I,t ≤ x̄∗I holds with strict inequality for all t ∈ (0, ∞).

iii) First, part ii) implies x̄I,t reaches x̄‡
I in finite time as long as the last inequality x̄∗I (1− (1−

r)rr/(1−r)) ≤ x̄‡
I in the theorem is satisfied. Below we show that, for any x̄I ≤ x̄‡

I , aggregate strategy
x̄I,t cannot increase over time, i.e., ˙̄xI,t ≤ 0 regardless of the underlying strategy composition.
Hence, it cannot come back above x̄‡

I in any finite time; since x̄‡
I < x̄∗I , this implies that x̄I,t never

returns to x̄∗I even asymptotically. Since Theorem 5 guarantees convergence of x̄I,t to either one
aggregate equilibrium, it must converge to another aggregate equilibrium x̄I = 0.

Now we prove ˙̄xI ≤ 0 whenever x̄I ≤ x̄‡
I . By the definition of x̄‡

I , we have P−1
Θ (x̄I)− F0

I (x̄I) ≥
F0

I (x̄I)− θO. The additional assumption on the switching rate function implies

R(θO − FI(x̄I)) ≥ R(P−1
Θ (x̄I)− F0

I (x̄I)

≥ R(F0
I (x̄I)− θO) ≥ R(F0

I (x̄I)− θ′O)

for any types θO ≥ P−1
Θ (x̄I) and θ′O ≤ FI(x̄I). The best response is I for the latter types except the

exact type θ′O = FI(x̄I) and O for all the other types, including the former types.
Therefore, the transition of Bayesian strategy xI is determined as follows. For any type θ′O <

FI(x̄I), we have

ẋI(θ
′
O) = R(F0

I (x̄I)− θ′O)xO(θ
′
O) ≤ R(F0

I (x̄I)− θO)xO(θ
′
O).

For the exact type θ′O = FI(x̄I), we have ẋI(FI(x̄I)) = 0 by R(FI(x̄I)− θ′O) = 0. These imply

ẊI({θO : θO ≤ FI(x̄I)}) ≤ R(F0
I (x̄I)− θO)XO({θO : θO ≤ FI(x̄I)}).

For any other type θO > FI(x̄I), we have

ẋI(θO) = −R(θO − FI(x̄I))xI(θ
′
O) ≤ 0.

In particular, for any type θO > P−1
Θ (x̄I), it is the case that

ẋI(θO) = −R(θO − FI(x̄I))xI(θ
′
O) ≤ −R(F0

I (x̄I)− θO)xI(θ
′
O).
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Hence, we obtain

ẊI({θO : θO > P−1
Θ (x̄I)}) ≤ −R(F0

I (x̄I)− θO)XI({θO : θO > P−1
Θ (x̄I)})

and
ẊI({θO : θO ∈ (FI(x̄I), P−1

Θ (x̄I)]}) ≤ 0.

Note that we have

XI({θO : θO > P−1
Θ (x̄I)}) = (1− PΘ(P−1

Θ (x̄I)))− XO({θO : θO > P−1
Θ (x̄I)})

= 1− x̄I − XO({θO : θO > P−1
Θ (x̄I)}) = x̄O − XO({θO : θO > P−1

Θ (x̄I)})

∴ XI({θO : θO > P−1
Θ (x̄I)})− XO({θO : θO ≤ FI(x̄I)})

= x̄O − XO({θO : θO > P−1
Θ (x̄I)})− XO({θO : θO ≤ FI(x̄I)})

= XO({θO : θO ∈ (FI(x̄I), P−1
Θ (x̄I)]}).

Therefore, these changes in strategy composition add to

˙̄xI = ẊI({θO : θO ≤ FI(x̄I)}) + ẊI({θO : θO ∈ (FI(x̄I), P−1
Θ (x̄I)]}) + ẊI({θO : θO > P−1

Θ (x̄I)})

≤ −R(F0
I (x̄I)− θO)

{
XI({θO : θO > P−1

Θ (x̄I)})− XO({θO : θO ≤ FI(x̄I)})
}

= −R(F0
I (x̄I)− θO)XO({θO : θO ∈ (FI(x̄I), P−1

Θ (x̄I)]}) ≤ 0.

C Appendix to Section 5

For stability, we use the weak topology and apply the Lyapunov stability theorem, as in Cheung
(2014). See its Section 4 for the detailed explanation on the strong and weak topology in evolu-
tionary dynamics in continuous space.

Theorem 10 (Cheung, 2014: Theorems 5–6, Corollary 2). Let Z ⊂ X be a closed set and let Y ⊂ X
be a neighborhood of Z in the weak topology on X . Let L : Y → R be a decreasing Lyapunov function
for dynamic V: that is, L is continuous with respect to the weak topology and Fréchet-differentiable with
L̇(X) = 〈∇L(X), V[X]〉 ≤ 0 for all X ∈ Y. Then the following holds.

i) Any solution path starting from Y converges to the set {X ∈ Y | L̇(X) = 0} with respect to the weak
topology; i.e., this set is attracting under V.

ii) If L−1(0) = Z, Z is Lyapunov stable under V with respect to the weak topology. Furthermore, if
L̇(X) < 0 whenever X ∈ Y \ Z, then Z is asymptotically stable under V.

Part i) holds for an increasing Lyapunov function; part ii) is retained by defining Z as an
isolated set of local maxima.

C.1 Proof of Theorem 4

Proof. x being a Bayesian equilibrium is equivalent to x(θ) ∈ B[EΘx](θ) for PΘ-almost all types θ.
Then, for such θ, this is equivalent to vF[x](θ) = 0 by (6). It holds for PΘ-almost all types θ, which
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means stationarity of Bayesian strategy x. Note that x being a Bayesian equilibrium is equivalent
to the corresponding strategy composition X =

∫
xdPΘ being an equilibrium composition and

that stationarity of Bayesian strategy x is equivalent to stationarity of strategy composition X, i.e.,
VF[X] = O.49

C.2 Proof of Theorem 6

In terms of strategy composition X =
∫

xdPΘ ∈ X , we redefine the heterogeneous potential
function f : X → R as

f (X) = f 0(X(Θ)) +
∫

Θ
∑

a∈A
θaXa(dθ).

Proof. As f (X) = f 0(X(Θ)) + EΘ[θ · x(θ)], weak continuity of f is obtained from continuity of f 0

and the dominated convergence theorem. By applying the definition of f to X + ∆X, we have

f (X + ∆X) = f 0(x̄ + ∆x̄) +
∫

Θ
∑

a∈A
θa(Xa + ∆Xa)(dθ)

=
{

f 0(x̄) +∇ f 0(x̄) · ∆x̄ + o(|∆x̄|)
}
+

{∫
Θ

∑
a∈A

θaXa(dθ) +
∫

Θ
∑

a∈A
θa∆Xa(dθ)

}
= f (X) + F0(x̄) · ∆x̄ +

∫
Θ

∑
a∈A

θa∆Xa(dθ) + o(|∆x̄|)

= f (X) +
∫

Θ
∑

a∈A
(F0

a (x̄) + θa)∆Xa(dθ) + o(|∆x̄|).

Here x̄ = X(Θ) and ∆x̄ = ∆X(Θ). The second equality comes from differentiability of f 0; the third
is from the assumption that f 0 is a potential function of F0 and the definition of f applied to X.
Then, we should recall Fa[X(Θ)](θ) = F0

a (X(Θ)) + θa. So the second term is 〈F[X(Θ)], ∆X〉. About
the third error term, note that |∆x̄| = |∆X(Θ)| ≤ ‖∆X‖. Therefore, we obtain

f (X + ∆X) = f (X) + 〈F[X(Θ)], ∆X〉+ o(‖∆X‖).

Thus, f is (Fréchet) differentiable with derivative ∇ f (X) ≡ F[X(Θ)]. So we have verified that f is
a potential function of the game F defined on X .

C.3 Proof of Theorem 5

Proof. i) Since f is a potential function for F, we have

ḟ (X) = 〈∇ f (X), Ẋ〉 = 〈F[x̄], VF[X]〉 = EΘ
[
F[x̄](θ) · vF[x](θ)

]
,

where x̄ = X(Θ) and X =
∫

Θ xdPΘ.
Since vF[x](θ) = v(F[x̄](θ), x(θ)), the first part of (8) implies F[x̄](θ) · vF[x](θ) ≥ 0 for all θ and

thus
ḟ (X) = EΘ

[
F[x̄](θ) · vF[x](θ)

]
≥ 0.

49O = (Oa)a∈A ∈ MA×Θ denotes a zero vector measure such as Oa(BΘ) = 0 for any BΘ ∈ BΘ, a ∈ A.
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Suppose x is not a Bayesian equilibrium. By Theorem 4, this is equivalent to non-stationarity
of the Bayesian strategy x, i.e., PΘ{θ : vF[x](θ) 6= 0}) > 0. For a type with vF[x](θ) 6= 0, the
second part of (8) implies F[x̄](θ) · vF[x](θ) > 0. Since this holds for positive mass of types, we
have

ḟ (X) = EΘ
[
F[x̄](θ) · vF[x](θ)

]
> 0.

Therefore, f is a strictly increasing Lyapunov function. By Theorem 10, this implies that the set
of Bayesian equilibria is globally attracting; a local strict maximum of f is locally asymptotically
stable.

ii) Suppose that the corresponding isolated equilibrium composition X∗ is asymptotically stable,
with the basin of attraction X∗ ⊂ X . Take an arbitrary strategy composition X0 from X∗ and let
{Xt}t∈R+ be the solution trajectory of the heterogeneous dynamic from X0. Since f is a strictly
increasing Lyapunov function, it must be the case that ḟ (Xt) > 0 as long as Xt has not reached
exactly X∗. Thus, f (X∗) = f (X0) +

∫ ∞
0 ḟ (Xt)dt > f (X0). Since X0 is taken arbitrarily from X∗,

this verifies that X∗ maximizes f in this neighborhood X∗.

C.4 Proof of Theorem 7

In terms of strategy compositions, the first part of the lemma is rephrased as f̄ (X(Θ)) ≥ f (X) for
any X ∈ X ; the second part means that the equality in this equation is equivalent to X being an
equilibrium composition.

Proof. i) From (9), observe that, for any X ∈ X and π̄ ∈ RA

f (X) = f 0(X(Θ)) +
∫

Θ
∑

a∈A
(π̄a + θa)xa(θ)P(dθ)− π̄ · X(Θ)

≤ f 0(X(Θ)) + EΘ[max
i∈A

(π̄i + θi)]− π̄ · X(Θ). (C.6)

As this holds for any π̄ ∈ RA, the definition of f̄ implies f (X) ≤ f̄ (X(Θ)).

ii) To find the condition for equality, notice that the inequality holds in (C.6) with equality if and
only if x(θ) ∈ argmaxy∈∆A y · (π̄ + θ) for PΘ-almost all θ ∈ Θ; that is, in composition X, almost all
agents take optimal action given π̄. If π̄ = F0(x̄), then it means X is an equilibrium composition
with x̄ = X(Θ).

According to Hofbauer and Sandholm (2007), the minimized function in (10) is strictly convex
and has the partial derivative w.r.t. x̄a equal to PΘ(a = arg maxi∈A(π̄i + θi)). So

f̄ (X(Θ)) = f 0(X(Θ)) + EΘ[max
i∈A

(π̄i + θi)]− π̄ · X(Θ)

if and only if π̄ satisfies x̄a = PΘ(a = arg maxi∈A(π̄i + θi)) for each a ∈ A. If x̄∗ is an aggregate
equilibrium, then x̄∗a = PΘ(a = arg maxi∈A(F0

i (x̄
∗) + θi)) and thus

f̄ (x̄∗) = f 0(x̄∗) + EΘ[max
i∈A

(F0
i (x̄
∗) + θi)]− F0(x̄∗) · x̄∗.
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Therefore, if and only if X∗ is an equilibrium composition, we have

f (X∗) = f 0(X∗(Θ)) + EΘ[max
i∈A

(F0
i (X
∗(Θ)) + θi)]− F0(X∗(Θ)) · X∗(Θ) = f̄ (X∗(Θ)).

Otherwise, we have f (X) < f̄ (X(Θ)).

iii) This is immediate from Corollary 2 and the fact that f̄ is a strictly increasing Lyapunov func-
tion for the homogenized smooth BRD (Hofbauer and Sandholm, 2007, Theorem 3.2).
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Supplementary note
“Nonaggregable evolutionary dynamics under payoff heterogeneity”

Dai Zusai
October 8, 2017

S1 Supplementary note on Section 1

S1.1 Example in Figure 1

The transition vector at time 0

At the initial aggregate strategy x̄0 = 0.5x̄0(θH) + 0.5x̄0(θL) = (ε, 0.5(1− ε), 0.5(1− ε)), the payoff
vector for type θ is F[x̄0](θ) = (1 + θ, 1, 1). Therefore, as long as θ > 0, action A is the unique
best response and the other two actions B and C are equally worse than A. Therefore, in all the
major dynamics illustrated in the subfigures, all agents switch to A and none switch between B
and C. Besides, since action B and action C initially yield the same payoffs and the aggregate
masses of these two actions are initially equal, the switching rate from B to A and that from C to
A are equal to each other at time 0, though they depend on the type of agents and they will differ
at later periods of time as the symmetry in the aggregate strategy will break. Given the initial
strategy composition x0, none of type-θH agents take action B at time 0 and none of type-θL agents
take action C. But this symmetry in the switching rate is important below, when comparing the
transition from this strategy composition and that from another flipped composition.

Denote this initial switching rate for type θH by RH
0 and that for type θL by RL

0 . These are
obtained for each dynamic as in Table 1.

Therefore, the transition vectors of each type’s Bayesian strategy at time 0 are obtained as
follows:

ẋ0(θ
H) = RH

0 (1− ε)(eA − eB),

ẋ0(θ
L) = RL

0 (1− ε)(eA − eC).

Dynamic RH
0 RL

0

Standard BRD 1 1
Tempered BRD Q(θH) Q(θL)

Smith θH θL

BNN (1− ε)θH (1− ε)θL

Replicator εθH εθL

Table 1: Switching rate from a suboptimal action to the optimal action A, given the strategy composition
x̄0 as in Figure 1. For BNN, it is assumed that a revising agent compares his own payoff with the average
payoff of agents of the same type. For replicator, since the proportion of action-A players is ε both in the
aggregate strategy or in each type’s Bayesian strategy, it does not matter whether agents are sampling from
the whole population or the same type of agents.

S1



(a) Standard BRD (b) Tempered BRD

(c) Smith (d) BNN (e) Replicator

Figure 5: Dynamics of aggregate strategy in a symmetric 3-action coordination game from x′0. The notation
of markers is the same as Figure 2.

By aggregating these transition vectors over the two types, we can get the transition vector of the
aggregate strategy at time 0:

˙̄x0 = 0.5 ˙̄x0(θ
H) + 0.5 ˙̄x0(θ

L)

= (1− ε)
{

RH
0 (e

A − eB) + RL
0 (e

A − eC)
}

.

Thus, the initial transition vector is asymmetrically tilted toward eA − eB, if RH
0 > RL

0 . From Table
1, we can see that this is the case for all the dynamics, except the standard BRD.

Comparison with another initial strategy composition

To confirm the dependency of the aggregate strategy trajectories on the initial strategy composi-
tion, we consider another strategy composition x′0:

x′0(θ
H) = (ε, 0, 1− ε), x′0(θ

H) = (ε, 1− ε, 0).

This shares the same aggregate strategy x̄′0 = 0.5x̄′0(θ
H) + 0.5x̄′0(θ

L) = (ε, 0.5(1− ε), 0.5(1− ε)) as
the first example. Figure 5 shows the trajectory of aggregate strategy under each of the five major
dynamics, starting from x′0. Note that, by the same calculation as above, we can easily obtain the
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transition vector of the aggregate strategy at time 0 as

˙̄x′0 = (1− ε)
{

RH
0 (e

A − eC) + RL
0 (e

A − eB)
}

.

Note that the switching rate of each type from a suboptimal action to the optimal action A is the
same as in the last example, i.e., the same as in Table 1. Therefore, if RH

0 > RL
0 , i.e., in all the

dynamics exthe initial transition vector is now tilted toward eA − eC.

S2 Supplementary note on Sections 2–3

S2.1 Norms on X and on FX

Proof of Theorem 8

Proof. An arbitrary measurable function g : Θ→ RA bounded by 1 satisfies

∑
a∈A

∫
θ∈Θ

ga(θ)Ma(dθ) = ∑
a∈A

∫
θ∈Θ

ga(θ)ma(θ)PΘ(dθ)

∴

∣∣∣∣∣∑s∈A
∫

θ∈Θ
ga(θ)ma(θ)PΘ(dθ)

∣∣∣∣∣ ≤ ∑
a∈A

∫
θ∈Θ
|ga(θ)ma(θ)|PΘ(dθ) ≤ ∑

a∈A

∫
θ∈Θ
|ma(θ)|PΘ(dθ)

The last inequality comes from ga being bounded by 1. As this holds for any such g, the supremum
cannot exceed ∑a

∫
Θ |ma|dPΘ.

On the other hand, define function ḡ : Θ → RA by ḡa(θ) = 1{ma(θ) > 0} − 1{ma(θ) ≤ 0}.
Then,

‖M‖ ≥ ∑
a∈A

∫
θ∈Θ

ḡa(θ)Ma(dθ)

= ∑
a∈A

∫
θ∈m−1

a (R++)
1 ·ma(θ)PΘ(dθ) +

∫
θ∈m−1

a (R−)
(−1) ·ma(θ)PΘ(dθ)

= ∑
a∈A

∫
θ∈m−1

a (R++)
|ma(θ)|PΘ(dθ) +

∫
θ∈m−1

a (R−)
|ma(θ)|PΘ(dθ)

= ∑
a∈A

∫
θ∈Θ
|ma(θ)|PΘ(dθ).

Combining these two inequalities, we verify the claim.

S2.2 Proof of Theorem 1

Lebesgue decomposition

Lemma 1 (cf. Rudin, 1987: §6.10). For any finite signed measure M = (Ma)a∈A ∈ MA×Θ, there is a
pair of finite signed measures M̃ = (M̃a)a∈A, M̂ = (M̂a)a∈A ∈ MA×Θ such that, for each a ∈ A,

i) Ma = M̃a + M̂a;

ii) M̃a � PΘ, i.e., PΘ(BΘ) = 0 =⇒ M̃a(BΘ) = 0 for any BΘ ∈ BΘ
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iii) M̂a ⊥ PΘ, i.e., there exists Ea ∈ BΘ such that M̂a(BΘ ∩ Ea) = 0 and PΘ(BΘ \ Ea) = 0 for any
BΘ ∈ BΘ.

The part (ii) implies that M̃ has density m̃ = (m̃a)a∈Awith respect to PΘ. Besides, ‖M̃‖ ≤ ‖M‖,
since i) and ii) imply ‖M‖ = ‖M̃‖+ ‖M̂‖.

Proof of Lipschitz continuity of V (part i of Theorem 1)

Henceforth, as we focus on PΘ-absolute continuous finite signed measures, we omit the tilde from
such measures.

In the following proofs of part i for the two kinds of protocols, we consider two PΘ-absolute
continuous finite signed measures M, M′ ∈ M̃A×Θ with densities m and m′. Let m̄ = M(Θ),
µ̄ = µ(m̄), µ(θ) := µ(m(θ)) and RF

ji(θ) := Rji(F[µ̄](θ), µ(θ)); similarly we define m̄′, µ̄′, µ′(θ) and
R′ji

F(θ).

Proof of part i: continuous switching rate functions. Let LR > 0 be the greatest Lipschitz constant of
functions Rij among all pairs of actions i, j ∈ A. The Lipschitz continuity of R·· and F0 implies

|RF
ji(θ)− R′ji

F(θ)| ≤ LR|(F[µ̄](θ), µ(θ))− (F[µ̄′](θ), µ′(θ))|

≤ LR
{
|F[µ̄](θ)− F(µ̄′](θ)|+ |µ(θ)− µ′(θ)|

}
≤ LR

(
LF(θ)|µ̄− µ̄′|+ |µ(θ)− µ′(θ)|

)
≤ LR

(
LF(θ)Lµ|m̄− m̄′|+ Lµ|m(θ)−m′(θ)|

)
. (S.1)

From the definition of vF+
i , we have

|vF+
i [M](θ)− vF+

i [M′](θ)| ≤ ∑
j∈A
|RF

ji(θ)µj(θ)− R′ji
F(θ)µ′j(θ)|

≤ ∑
j∈A

{
|RF

ji(θ)− R′ji
F(θ)| |µj(θ)|+ |R′jiF(θ)| · |µj(θ)− µ′j(θ)|

}
≤ ∑

j∈A

[
3LR

(
LF(θ)Lµ|m̄− m̄′|+ Lµ|m(θ)−m′(θ)|

)
+ R̄Lµ|m(θ)−m′(θ)|

]
≤ A

{
3LRLF(θ)Lµ|m̄− m̄′|+ (3LR + R̄)Lµ|m(θ)−m′(θ)|

}
(S.2)

Here the third inequality comes from (S.1), Assumption 2 and |µj(·)| ≤ 3. Similarly, we get

|vF−
i [M](θ)− vF−

i [M′](θ)| ≤ A
{

3LRLFLµ|m̄− m̄′|+ (3LR + R̄)Lµ|m(θ)−m′(θ)|
}

.

Therefore, we have

‖VF[M]−VF[M′]‖

≤
∫

Θ
∑
i∈A

(
|vF+

i [M](θ)− vF+
i [M′](θ)|+ |vF−

i [M](θ)− vF−
i [M′](θ)|

)
PΘ(dθ)

≤
∫

Θ

[
∑
i∈A

2A
{

3LRLF(θ)Lµ|m̄− m̄′|+ (3LR + R̄)Lµ|m(θ)−m′(θ)|
}]

PΘ(dθ)

= 2A2 · 3LREΘLFLµ|m̄− m̄′|+ 2A2(3LR + R̄)Lµ

∫
Θ
|m(θ)−m′(θ)|PΘ(dθ)
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≤ 2A2(3LR L̄F + 3LR + R̄)Lµ‖M−M′‖.

The last inequality comes from |m̄ − m̄′| = |M(Θ) −M′(Θ)| ≤ ‖M −M′‖. So VF is Lipschitz
continuous with constant 2A2(3LR L̄F + 3LR + R̄)Lµ.

In an exact optimization protocol, the dynamic reduces as the following: if b is the unique
maximizer of {F̃a(µ̄; θ) | a ∈ A}, i.e., the unique best response to µ̄ for type θ, then

vb(θ)[M] = ∑
j∈A\{b}

Qjb(F̃(µ̄; θ))µj(θ)

vi(θ)[M] = −Qib(F̃(µ̄; θ))µi(θ) for any i ∈ A \ {b}.

Assumption 3 implies that the best response is unique for almost every type, this determines the
composite dynamic without ambiguity.

Proof of part i: exact optimization protocols. Let LQ > 0 be the greatest Lipschitz constant of func-
tions Qij among all pairs of actions i, j ∈ A. Denote ∆vi(θ) := vi(θ)[M]− vi(θ)[M′]. Let β−1

b (µ̄)

be the set of types θ for whom b ∈ A is the unique optimal action given F̃(µ̄; θ), and N be the set
of types for which there are multiple best responses at F̃(µ̄; θ) or F̃(µ̄′; θ). Assumption 3 implies
PΘ(N) = 0. Define partitions of Θ \ N by

∩βb := β−1
b (m̄) ∩ β−1

b (µ̄′), ∆βbc := β−1
b (m̄) ∩ β−1

c (µ̄′) for each b ∈ A, c ∈ A \ {b}.

Let ∩β :=
⋃

b∈A ∩βb and ∆β :=
⋃

b∈A
⋃

c∈A\{b} ∆βbc.
Denote Qji(θ) := Qji(F̃(µ̄; θ)) and Q′ji(θ) := Qji(F̃(µ̄′; θ)). Similarly to (S.1), Lipschitz continu-

ity of Qji and F0 implies

|Qji(θ)−Q′ji(θ)| ≤ LQLµ

(
LF(θ)|m̄− m̄′|+ |m(θ)−m′(θ)|

)
(S.3)

for all i, j ∈ A, θ ∈ Θ.

i) Consider ∩βb for an arbitrary b ∈ A. Fix θ ∈ ∩βb: action b is the optimal action for this type θ

both in the state M and the state M′. Then, similarly to (S.2), boundedness of Q and (S.3) imply

|∆vb(θ)| ≤ ∑
j∈A\{b}

|Qjb(θ)µj(m(θ))−Q′jb(θ)µj(m′(θ))|

≤ (A− 1)
{

3LQLF(θ)Lµ|m̄− m̄′|+ (3LQ + Q̄)Lµ|m(θ)−m′(θ)|
}

For action i 6= b,

∆vi(θ) = (−Qib(θ)µi(θ))−
(
−Q′ib(θ)µi(θ)

)
= −{Qib(θ)−Q′ib(θ)}µi(θ)−Q′ib(θ){µi(θ)− µ′i(θ)}.

(S.3) implies

|∆vi(θ)| ≤ LQLµ

(
LF(θ)|m̄− m̄′|+ |m(θ)−m′(θ)|

)
|µi(θ)|+ Q′i(θ)Lµ|m(θ)−m′(θ)|

≤ 3LQLµLF(θ)|m̄− m̄′|+ (3LQ + Q̄)Lµ|m(θ)−m′(θ)|.

The second inequality comes from boundeness of Q and µ.
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Therefore, we have

∑
a∈A
|∆va(θ)| ≤ 2(A− 1)Lµ

{
3LQLF(θ)|m̄− m̄′|+ (3LQ + Q̄)|m(θ)−m′(θ)|

}
and thus∫

∩β
∑

a∈A
|∆va(θ)|PΘ(dθ)

≤ 2(A− 1)Lµ

{
3LQ

∫
∩β

LF(θ)|m̄− m̄′|PΘ(dθ) + (3LQ + Q̄)
∫
∩β
|m(θ)−m′(θ)|PΘ(dθ)

}
≤ 2(A− 1)Lµ(3LQ L̄F + 3LQ + Q̄)‖M−M′‖. (S.4)

The second inequality comes from PΘ(∩β) ≤ PΘ(Θ) = 1, |m̄− m̄′| ≤ ‖M−M′‖,
∫
∩β LF(θ)PΘ(dθ) ≤

EΘLF = L̄F, and
∫
∩β |m(θ)−m′(θ)|PΘ(dθ) ≤ ‖M−M′‖.

ii) Consider ∆βbc for two arbitrary distinct actions b, c ∈ A with b 6= c. Fix θ ∈ ∆βbc: action b is
the optimal action for this type θ in the state M and c is the optimal in the state M′. Then,

0 ≤ ∑
j∈A\{b}

Qjb(θ)µj(θ)−
(
−Q′bc(θ)µ

′
b(θ)

)
= ∆vb(θ) ≤ ∑

j∈A\{b}
Q̄ · 3 + Q̄ · 3 = 3AQ̄.

Similarly, we have 0 ≥ ∆vc(θ) ≥ −3AQ̄. For i 6= b, c,

∆vi(θ) = (−Qib(θ)µi(θ))−
(
−Q′ib(θ)µ

′
i(θ)

)
.

Since Q(·) ∈ [0, Q̄] and µ·(·) ∈ [−3, 3], we have

|∆vi(θ)| ≤ |Qib(θ)µi(θ)|+ |Q′ib(θ)µ′i(θ)| ≤ 6Q̄.

Therefore,

∑
a∈A
|∆vi(θ)| ≤ 2 · 3AQ̄ + (A− 2) · 6Q̄ = 12(A− 1)Q̄.

By Assumption 3, we have∫
∆βbc

∑
a∈A
|∆va(θ)|PΘ(dθ) ≤ 12(A− 1)Q̄PΘ(∆βbc) ≤ 12(A− 1)Q̄Lβ|m̄− m̄′|

and thus ∫
∆β

∑
a∈A
|∆va(θ)|PΘ(dθ) = ∑

b∈A
∑

c∈A\{b}
|∆va(θ)|PΘ(dθ)

≤ 12A(A− 1)2Q̄Lβ|m̄− m̄′| ≤ 12A(A− 1)2Q̄Lβ‖M−M′‖. (S.5)

Again, the second inequality comes from |m̄− m̄′| ≤ ‖M−M′‖.
As Θ = ∩β + ∆β + N and PΘ(N) = 0, we have

‖V[M]−V[M′]‖ =
∫
∩β

∑
a∈A
|∆va(θ)|PΘ(dθ) +

∫
∆β

∑
a∈A
|∆va(θ)|PΘ(dθ).

(S.4) and (S.5) imply ‖V[M]−V[M′]‖ ≤ LV‖M−M′‖ with

LV := 2(A− 1)Lµ{3LQ L̄F + (3LQ + Q̄)}+ 12A(A− 1)2Q̄Lβ.
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Consider an ASAG. Then, θ ∈ ∆βbc is equivalent toF0
b (µ̄) + θb > F0

j (µ̄) + θj for all j ∈ A \ {b}

F0
c (µ̄

′) + θc > F0
j (µ̄
′) + θj for all j ∈ A \ {c}

This implies
F0

c (µ̄
′)− F0

b (µ̄
′) > θb − θc > F0

c (µ̄)− F0
b (µ̄).

Hence, if there exists p̄Θ ∈ R such that PΘ({θ ∈ Θ : c ≤ θb − θa ≤ d}) ≤ (d− c) p̄Θ, we have

PΘ(∆βbc) ≤ p̄
{
(F0

c (µ̄
′)− F0

b (µ̄
′))− (F0

c (µ̄)− F0
b (µ̄))

}
≤ 2p̄

{
|F0

c (µ̄
′)− F0

c (µ̄)|+ |F0
b (µ̄

′)− F0
b (µ̄)|

}
≤ 2p̄LFLµ|m̄− m̄′|. (S.6)

Thus, Assumption 3 is satisfied.

Proof of part ii of Theorem 1

For part ii, we use Theorem 9 in Appendix A.3, namely, Zeidler (1986, Corollary 3.9).

Proof of parts ii. We leave only the boundedness of the dynamic; it comes from Assumption 2.
Using the formula A.3 of the variational norm, we can obtain ‖VF[M]‖ ≤ 3AR̄ for all M ∈ M
since vF

i [M̃](θ) ∈ [−3R̄, 3R̄] by Assumption 2 and µ(·) ∈ [−3, 3].
Then, Theorem 9 implies the unique existence of a solution path of the dynamic onM. Notice

that X is forward invariant under V. Therefore, if the initial state X0 lies in X ⊂ M, then the
unique solution that passes X0 at time 0 should remain in X .
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