
 

 

 

 

 

Job Displacement during the Great Recession: Tight Bounds 
on Distributional Treatment Effect Parameters using Panel 

Data  
 

Brantly Callaway 
Department of Economics 

Temple University 
 
 
 
 
 

 
 
 

Department of Economics 
DETU Working Paper 17-03 

December 2017 
 
 
 
 

1301 Cecil B. Moore Avenue, Philadelphia, PA 19122 

http://www.cla.temple.edu/economics/faculty/detu-working-paper-series/  



Job Displacement during the Great Recession: Tight Bounds on
Distributional Treatment Effect Parameters using Panel Data

Brantly Callaway∗†

This Version: August 2017
First Version: October 2015

Abstract

Late prime-age workers who were displaced during the Great Recession lost on average 39% of their
earnings relative to their counterfactual earnings had they not been displaced. But the average effect
masks substantial heterogeneity across workers. This paper develops new techniques to bound distri-
butional treatment effect parameters that depend on the joint distribution of potential outcomes – an
object not identified by standard identifying assumptions such as selection on observables or even when
treatment is randomly assigned. I show that panel data and an additional assumption on the dependence
between untreated potential outcomes for the treated group over time (i) provide more identifying power
for distributional treatment effect parameters than existing bounds and (ii) provide a more plausible set
of conditions than existing methods that obtain point identification.
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1 Introduction

From the official beginning of the Great Recession in December 2007 to October 2009, the
U.S. economy shed 8.4 million jobs and the unemployment rate doubled from 5.0% to 10.0%.
Reemployment has been slow; many workers exited the labor force, had long unemployment spells,
or moved into part time employment (Farber 2015). Using standard techniques, I find that annual
earnings of displaced workers were, on average, 39% lower in 2011 than they would have been had
the worker not been displaced. However, the effect of job displacement may be quite heterogeneous
across workers. Some workers may quickly move into similar jobs, some may move into jobs with
lower wages or into part time employment, and others may remain unemployed. Understanding
this heterogeneity is of interest to researchers and policymakers. The policy response may be quite
different if the effect of job displacement is very similar for all individuals compared to the case
with very heterogeneous effects.

To understand the heterogeneous effects of job displacement, I develop new tight bounds on
distributional treatment effect parameters that exploit having access to panel data. These bounds
are much tighter than existing bounds and provide a credible alternative to point identifying
assumptions that are not likely to hold in the current application. I find that workers in the 95th
percentile of earnings losses due to displacement lose between 86% and 97% of earnings relative
to counterfactual earnings had they not been displaced. I also find that at least 7.0% of workers
have higher earnings after displacement than they would have had if they had not been displaced.
These findings indicate that there is substantial heterogeneity in the effect of job displacement,
but they would not be available using standard approaches to program evaluation. Finally, I
find that, on average, earnings losses for workers with higher earnings before the recession are
larger in magnitude than earnings losses for workers with lower earnings before the recession; but,
as a fraction of earnings, average earnings losses are roughly constant across the distribution of
pre-recession earnings.

Learning about heterogeneity in the effect of job displacement requires knowledge of the joint
distribution of displaced potential earnings and non-displaced potential earnings for the group of
workers that are displaced. However, the joint distribution of potential outcomes is not identified
under common identifying assumptions such as selection on observables or even when individuals
are randomly assigned to treatment. In each of these cases, although the marginal distributions
of displaced and non-displaced potential earnings are identified, the copula – which “couples”
the marginal distributions into the joint distribution and captures the dependence between the
marginal distributions – is not identified.

To give an example, suppose a researcher is interested in the fraction of workers who have
higher earnings following displacement than they would have had if they not been displaced.
Further, suppose hypothetically that workers are randomly assigned to being displaced or not
being displaced. In this case, the average effect of job displacement is identified – it is given by
the difference between average earnings of those who are randomly assigned to be displaced and
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those who are randomly assigned to not be displaced. But the fraction of workers that benefit
from displacement is not identified because, for workers randomly assigned to be displaced (non-
displaced), where they would be in the distribution of non-displaced (displaced) earnings is not
known.

There are many important parameters that depend on the joint distribution of potential out-
comes. These include the fraction of individuals that benefit from being treated, the correlation
between treated and untreated potential outcomes, the variance of the treatment effect, the quan-
tiles and distribution of the treatment effect itself, and the distribution of the treatment effect
conditional on an individual’s untreated potential outcome (Heckman, Smith, and Clements 1997;
Firpo and Ridder 2008). These parameters are not just of theoretical importance. Policymakers
may decide to implement a policy based on whether or not a large enough fraction of the popu-
lation benefits from the policy rather than based on the average benefit of the policy. As another
example, policymakers are likely to prefer programs with widespread though smaller benefits to
ones where very few people benefit but have extremely large benefits. Finally, for some treatments
that are not the direct result of policy decisions, such as job displacement, the response from pol-
icymakers may differ in cases where many individuals all experience a small effect of treatment
compared to one where a few individuals are very affected.

Existing methods take two polar approaches to identifying the joint distribution of potential
outcomes. One idea is to construct bounds on the joint distribution without imposing any as-
sumptions on the unknown dependence (Heckman, Smith, and Clements 1997; Fan and Park 2009;
Fan and Park 2012). In the case of job displacement, these bounds are not very informative. The
main implications of these bounds are that (i) at least 22% of workers have lower earnings due to
displacement than they would have had if they had not been displaced and (ii) the median of the
treatment effect is between 65% lower earnings and 56% higher earnings.

Another approach is to assume that the dependence is known. The leading choice is perfect
positive dependence.1 This assumption says that individuals at a given rank in the distribution
of earnings following displacement would have the same rank in the distribution of non-displaced
potential earnings. This is a very strong assumption as it imposes severe restrictions on how
heterogeneous the effect of job displacement can be; for example, it prohibits any workers at the
top of the distribution of non-displaced earnings from becoming unemployed or taking a part
time job following displacement. But the assumption is much stronger than that – it prohibits
displacement from even swapping the rank of any workers relative to their rank had they not been
displaced.

In light of (i) the implausibility of existing point-identifying assumptions and (ii) the wide
bounds resulting from imposing no assumptions on the missing dependence, I develop new, tighter

1This assumption was first implicitly made in the earliest work on estimating the distributional effects of treatment (Doksum
1974; Lehmann 1974) that compared the difference between treated quantiles and untreated quantiles and interpreted this
difference as the treatment effect at that quantile. There is also recent work on testing the assumption of perfect positive
dependence (Bitler, Gelbach, and Hoynes 2006; Dong and Shen 2015; Frandsen and Lefgren 2015)
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bounds on parameters that depend on the joint distribution of potential outcomes. Unlike existing
work which considers the case of cross-sectional data, I exploit having access to panel data on
workers’ annual earnings. Panel data presents a unique opportunity to observe, at least for some
individuals, both their displaced and non-displaced potential earnings though these are observed
at different points in time. With panel data and under plausible identifying assumptions, the
bounds on the joint distribution are much tighter – in theory, the joint distribution could even be
point identified. To implement my method requires at least three periods of panel data.

Even though panel data appears to be useful for identifying the joint distribution of potential
outcomes, there are still some challenges. In the context of Difference in Differences models,
previous work has used panel data to recover missing dependence in the current period from
observed dependence in previous periods (Callaway and Li 2017). But that approach is not
possible in the current context because the dependence between displaced and non-displaced
potential earnings is never observed – even in previous periods. Instead panel data is informative
about the dependence between non-displaced potential earnings over time. One idea would be to
assume perfect positive dependence between non-displaced potential earnings over time (Heckman
and Smith 1998). This assumption results in point identification. With three periods of panel
data, a researcher could pre-test this assumption by checking whether or not perfect positive
dependence occurs in the periods before displacement. This assumption is rejected in the current
application; intuitively, it requires no changes in ranks of annual earnings over time which is a
very strong assumption.

Instead of assuming perfect positive dependence of non-displaced potential earnings over time,
I assume that the dependence (or copula) of non-displaced potential earnings over time is the
same over time. I call this assumption the Copula Stability Assumption. Recent work on income
mobility decomposes the income at two different points in time into the marginal distributions
– which capture inequality – and the copula which captures income mobility (Chetty, Hendren,
Kline, and Saez 2014). Thus, in the context of job displacement, the Copula Stability Assumption
requires that, in the absence of job displacement, earnings mobility would be constant over time
for the group of displaced workers. Requiring that earnings mobility is constant over time is a
considerably weaker assumption than assuming there is no earnings mobility over time. Impor-
tantly, the Copula Stability Assumption does not restrict the distribution of earnings over time.
For example, the distribution of earnings can shift to the right over time or the distribution of
earnings can become increasingly unequal over time.

I provide two pieces of evidence in favor of the Copula Stability Assumption. First, I show
that the Copula Stability Assumption is likely to be satisfied in a very general model of the type
typically estimated in panel data settings. Second, there is empirical evidence in favor of the
Copula Stability Assumption. In the United States, despite large increases in inequality, there
has been remarkably little change in yearly earnings mobility since the middle of the 20th century
(Kopczuk, Saez, and Song 2010, and also see Figure 1).
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The final requirement for using my method is that the counterfactual distribution of non-
displaced potential earnings for the group of displaced workers must be identified. Because job
displacement is not randomly assigned, this requires some type of identifying assumption. I use
the Change in Changes model (Athey and Imbens 2006) to identify this distribution though the
results are not sensitive to using other methods such as selection on observables (Firpo 2007) as
long as a lag of earnings is included as a conditioning variable.

The bounds work in the following way. Let Y1t be displaced potential earnings after dis-
placement, Y0t be non-displaced potential earnings after displacement, and Y0t−1 be observed
non-displaced earnings before displacement. Existing bounds come from statistical bounds on
bivariate distributions when the marginal distributions are known (Hoeffding 1940; Fréchet 1951).
Under the setup in the current paper, the joint distributions of (Y1t, Y0t−1) and (Y0t, Y0t−1) are
also available. I utilize the following result: for three random variables, when two of the three
bivariate joint distributions are known, then bounds on the third bivariate joint distribution are
at least as tight as the bounds when only the marginal distributions are known (Joe 1997).

Consider an extreme example. Suppose Y1t and Y0t−1 are perfectly positively dependent and
Y0t and Y0t−1 are perfectly positively dependent, then Y1t and Y0t must also be perfectly positively
dependent. In this case, the extra information from panel data results in point identification.
In fact, point identification will occur when either (A) perfect positive dependence is observed
between Y1t and Y0t−1 or (B) perfect positive dependence is observed between Y0t−1 and Y0t−2. The
first case is very similar to the leading idea for point identification – perfect positive dependence
across treated and untreated potential outcomes – though it also involves an additional time
dimension. The second case is exactly the leading assumption for point identification with panel
data – perfect positive dependence of untreated potential outcomes over time. Moreover, the
bounds are tighter as either (Y1t, Y0t−1) or (Y0t, Y0t−1) becomes more positively dependent. This
implies that even when these assumptions are violated, if these assumptions are “close” to holding,
my method is robust to these deviations and will deliver tight bounds in precisely this case.
Job displacement falls exactly into this category. Neither type of perfect positive dependence is
observed; nonetheless, there is strong positive dependence which results in substantially tighter
bounds.

Under the current setup, I am also able to study a parameter I call the Average Treatment
Effect on the Treated Conditional on Previous Outcome (ATT-CPO). Although this parameter
could be identified under some existing assumptions (for example, an experiment where panel
data is also available), it is not under the standard panel data models used in much of the job
displacement literature. I find that, on average, earnings losses for workers with higher earnings
before the recession are larger in magnitude than earnings losses for workers with lower earnings
before the recession; but, as a fraction of earnings, average earnings losses are very similar across
the distribution of pre-recession earnings.

There are three other approaches to bounding the joint distribution of potential outcomes that
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should be mentioned. Fan, Guerre, and Zhu (2017) bound parameters that depend on the joint
distribution when covariates are available. This approach could theoretically be combined with
the approach considered in the current paper to obtain even tighter bounds at the cost of signifi-
cantly more challenging estimation. Another assumption that can bound parameters that depend
on the joint distribution of potential outcomes is the assumption of Monotone Treatment Re-
sponse (MTR) (Manski 1997). Kim (2014) combines this assumption with the statistical bounds
approach. MTR would imply that earnings for displaced workers cannot be larger than earnings
would have been had they not been displaced. This assumption is rejected by the bounds devel-
oped in the current paper. Finally, Frandsen and Lefgren (2016) obtain tighter bounds on the
joint distribution of potential outcomes by ruling out negative dependence between the potential
outcomes.

There is some empirical work studying the distributional effects of participating in a program.
Djebbari and Smith (2008) use Fréchet-Hoeffding bounds to study the distributional effects of
the PROGRESA program in Mexico. Carneiro, Hansen, and Heckman (2003) and Abbring and
Heckman (2007), among others, use factor models to identify the joint distribution of treated and
untreated potential outcomes.

2 Background

This section provides some context, motivation, and required details for studying distributional
treatment effect parameters. After introducing some notation, it considers distributional treat-
ment effect parameters that depend on the joint distribution of potential outcomes and why they
are useful. Finally, it discusses in more detail why the joint distribution of potential outcomes is
not identified under conventional identifying assumptions as well as existing stronger assumptions
that point identify the joint distribution.

2.1 Treatment Effects Setup

The notation used throughout the paper is very similar to the notation used in the treatment
effects literature in statistics and econometrics. All individuals in the population either participate
or do not participate in a treatment. Let Dt = 1 for individuals that participate in the treatment
and Dt = 0 for individuals who do not participate in the treatment (to minimize notation, a
subscript i representing each individual is omitted). The paper considers the case where panel
data is available and therefore random variables have a time subscript t. Each individual has
potential outcomes in the treated and untreated states at time t which are given by Y1t and Y0t,
respectively. But, for each individual, only one of these potential outcomes is observed at each
time period. For individuals that are treated in period t, Y1t is observed, but Y0t is not observed.
For individuals that are untreated in period t, Y0t is observed but Y1t is unobserved. Let Yt be the
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observed outcome in period t; one can then write

Yt = DtY1t + (1−Dt)Y0t

It is helpful to make the following assumption

Assumption 1. The observed data consists of {Yidt, Y0it−1, Y0it−2, Xi, Dit} and is independently
and identically distributed.

Assumption 1 covers available data in the baseline case considered in the paper. In particular,
Assumption 1 says that the researcher observes outcomes in three periods. The researcher may also
observe a vector of covariates X which, for simplicity, I assume are time invariant. Assumption 1
also says that individuals are first treated in the last period which implies that untreated potential
outcomes are observed for both the treated group and the untreated group in periods t − 1 and
t− 2. That is,

Yt−1 = Y0t−1 and Yt−2 = Y0t−2

Assumption 1 can be relaxed if additional periods are available or if treatment can occur in other
periods besides the last one, but it represents a baseline case for tighter bounds and corresponds
to the data used to study job displacement.

The next assumption is the starting point for the main identification results in the paper.

Assumption 2. FY1t|Dt=1 and FY0t|Dt=1 are identified.

Assumption 2 says that the marginal distribution of treated potential outcomes for the treated
group, FY1t|Dt=1, and the marginal distribution of untreated potential outcomes for the treated
group, FY0t|Dt=1, are identified. The first is not a strong assumption – it is given by the distribution
of observed outcomes for the treated group, FYt|Dt=1. The second is a stronger assumption.
The counterfactual distribution would be identified if, for example, treatment were randomly
assigned. However, in cases with observational data, like job displacement, it requires some
identifying assumption. But there are many methods available to identify this counterfactual
distribution. At any rate, the goal of the current paper is to go beyond the more standard
objective of identifying this counterfactual distribution and learn about the joint distribution; thus,
at this point, Assumption 2 considers the more standard problem of identifying the counterfactual
marginal distribution to be solved.

2.2 Parameters of Interest

Assumption 2 implies that parameters that depend on the marginal distributions of treated
and untreated potential outcomes for the treated group are identified. These include the Average
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Treatment Effect on the Treated (ATT) 2

ATT = E[Y1t − Y0t|Dt = 1]

and the Quantile Treatment Effect on the Treated (QTT)

QTT (τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

for τ ∈ (0, 1) and where F−1
X (τ) = inf{x : FX(x) ≥ τ}.3

But distributional parameters that depend on the joint distribution of potential outcomes are
not identified and these may be of considerable interest. For job displacement, I focus primarily on
the Distribution of the Treatment Effect for the Treated (DoTT) and closely related parameters
that are simple functionals of the DoTT; Heckman, Smith, and Clements (1997) and Firpo and
Ridder (2008) discuss other parameters in this class that may be of interest in other applications.

The DoTT is the fraction of individuals that experience a treatment effect less than some value
δ and is given by

DoTT (δ) = P(Y1t − Y0t ≤ δ|Dt = 1)

One can estimate the DoTT for different values of δ and plot them. An alternative approach, and
the one that seems more useful for studying job displacement is to invert the DoTT to obtain
Quantiles of the Treatment Effect on the Treated (QoTT) which is given by

QoTT (τ) = inf{δ : DoTT (δ) ≥ τ}

To give some examples, in the context of job displacement, QoTT (0.05) is the 5th percentile of
the individual level effect of job displacement – these are the workers who experience some of the
largest negative effects of job displacement. QoTT (0.5) is the median effect of job displacement.
And QoTT (0.95) are workers who have close to the highest earnings relative to what they would
have if they had not been displaced. Also, for some 0 < τL < τU < 1, I use QoTT (τU)−QoTT (τL)
as a measure of treatment effect heterogeneity. An example is the difference between the 95th
percentile of earnings following job displacement and the 5th percentile of earnings following job
displacement.

2All the parameters mentioned above condition on being part of the treated group, but one may also be interested in these
parameters for the entire population. Panel data is most useful for identifying parameters conditional on being part of the treated
group. Using the techniques presented in the current paper can still lead to bounds on parameters for the entire population by
combining the bounds for the treated group presented in the current paper with bounds for the untreated group coming from
existing statistical bounds. These bounds will be tighter if a larger fraction of the population is treated. I do not pursue bounds
on parameters for the entire population throughout the rest of the paper.

3Quantile Treatment Effects are very useful for evaluating welfare effects of a policy because they allow a researcher to
compare the distribution of outcomes under the policy to the distribution of outcomes without the policy which provides
considerably more information than just the knowledge of the average effect of the policy (Sen 1997; Carneiro, Hansen, and
Heckman 2001).
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Another interesting parameter for job displacement is the fraction of workers that have higher
earnings following job displacement than they would have had if they had not been displaced. Let
β denote this probability; it is given by

β = 1−DoTT (0)

One important limitation of the QTT and the QoTT is that they can fail to provide information
on which types of individuals experience the largest effects of treatment. For example, with panel
data one can address whether workers with high earnings or low earnings in the previous period
experience larger effects of job displacement. This parameter, which I term the Average Treatment
Effect on the Treated Conditional on Previous Outcomes (ATT-CPO)4 is given by

ATT-CPO(y′) = E[Y1t − Y0t|Y0t−1 = y′, Dt = 1]

In the current framework, this parameter is point identified because the joint distributions
FY1t,Y0t−1|Dt=1 and FY0t,Y0t−1|Dt=1 are identified, and the ATT-CPO depends only on these joint
distributions and not on the joint distribution of treated and untreated potential outcomes for the
treated group in period t. The next example provides a case where a combination of the ATT-
CPO and the QoTT can provide a better understanding of the distributional effect of treatment
compared to the QTT.

Example 1. Suppose there are 10 workers in the population that are observed in two periods. In
the first period, suppose each worker’s earnings are given by their number; worker 1 has earnings
of 1, worker 2 has earnings of 2, etc. In the second period, in the absence of displacement, suppose
each worker keeps the same earnings as in the first period. For worker 10, suppose his earnings
decrease to 0 if he is displaced, but for the other workers, suppose they are able to find a new job with
the same earnings. In this case, the QTT is constant everywhere and equal to -1. In much applied
research, this effect would wrongly be interpreted as the effect of displacement being the same across
workers with high and low earnings. On the other hand, QoTT (0.1) = −10 and QoTT (τ) = 0 for
τ > 0.1. Immediately, this would imply that the effect of treatment is very heterogeneous – one
worker has much lower earnings due to being displaced while most workers experience no effect of
displacement on earnings. Also, ATT-CPO(10) = −10 but ATT-CPO(y′) = 0 for other values of
y′. This would imply the effect of displacement is strongest for workers with highest earnings.

4Heckman, Smith, and Clements (1997) suggest the related parameter FY1t−Y0t|Y0t
(δ|y0). This is the distribution of the

treatment effect conditional on the base state Y0t taking some particular value y0. It is an interesting parameter, but it suffers
from being difficult to display graphically because in most cases a researcher is interested in this parameter while varying y′

in many values of its support. A plot of the result would be a three dimensional and difficult to interpret. An alternative
measure is E[Y1t − Y0t|Y0t = y0]. This is the average treatment effect conditional on the base state Y0t taking some particular
value y0. Varying y0 results in an easy to interpret two dimensional plot. However, in the current setup, this parameter is not
point identified because it depends on the joint distribution of treated and untreated potential outcomes which is only partially
identified in the current setup.
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This example is less extreme than it appears. If any workers from the middle or top of the
non-displaced potential earnings distribution move to the lower part of the distribution of earnings
following displacement – which could happen due to difficulty finding new employment, moving
to part time work, or having much lower wages at a new job – then the QTT will be very difficult
to interpret. However, the QoTT and the ATT-CPO can still be very helpful to understand the
distributional effects of displacement.

2.3 The Identification Issue and Existing Solutions

This section explains in greater detail the fundamental reason why the joint distribution of
potential outcomes is not point identified except under strong assumptions. First, I assume that
both the marginal distribution of treated potential outcomes for the treated group FY1t|Dt=1 and
the marginal distribution of untreated potential outcomes for the treated group FY0t|Dt=1 are
identified. The first can be obtained directly from the data; the second is obtained under some
identifying assumption which is assumed to be available. Sklar (1959) demonstrates that joint
distributions can be written as the copula function of marginal distributions in the following way

FY1t,Y0t|Dt=1(y1, y0) = CY1t,Y0t|Dt=1
(
FY1t|Dt=1(y1),FY0t|Dt=1(y0)

)
(2.1)

where CY1t,Y0t|Dt=1(·, ·) : [0, 1]2 → [0, 1]. This representation highlights the key piece of missing
information under standard assumptions – the copula function. Using results from the statistics
literature, one can still construct the so-called Fréchet-Hoeffding bounds on the joint distribution.
These bounds arise from considering two extreme cases: (i) when there is perfect positive depen-
dence between the two marginal distributions and (ii) when there is perfect negative dependence
between the two distributions. Heckman, Smith, and Clements (1997) follow this procedure and
find that it leads to very wide bounds in general. Moreover, that paper points out that under
strong forms of negative dependence, the bounds do not seem to make sense in an application on
the treatment effect of participating in a job training program.

At the other extreme, one could posit a guess for the copula. In the cross-sectional case, the
most common assumption is perfect positive dependence between treated potential outcomes and
untreated potential outcomes for the treated group. This assumption can be written as

Assumption 3 (CS-PPD).

FY1t|Dt=1(Y1t) = FY0t|Dt=1(Y0t)

Assumption 3 implies that

Y0t = F−1
Y0t|Dt=1(FY1t|Dt=1(Y1t))

which means that for any individual in the treated group with observed outcome Y1t, their coun-
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terfactual untreated potential outcome Y0t is also known which implies that the joint distribution
is point identified. Although this assumption might be more plausible than assuming indepen-
dence or perfect negative dependence, it seems very unlikely to hold in practice because it severely
restricts the ability of treatment to have different effects across different individuals. But the idea
that different individuals can experience different effects of treatment is one of the central themes
of the entire treatment effects literature. In the context of job displacement, perfect positive
dependence seems unlikely to hold because it would prohibit individuals at the top of the pre-
displacement earnings distribution from being unemployed or taking a part time job following job
displacement.

With panel data, perhaps a more plausible assumption is perfect positive dependence in un-
treated potential outcomes over time (this idea is mentioned in Heckman and Smith 1998):

Assumption 4 (Panel-PPD).

FY0t|Dt=1(Y0t) = FY0t−1|Dt=1(Y0t−1)

Assumption 4 does not directly replace the unknown copula in Equation 2.1, but the next
result establishes that this assumption also leads to point identification of the joint distribution
of potential outcomes.

Result 1. Under perfect positive dependence between untreated potential outcomes for the treated
group over time,

FY1t,Y0t|Dt=1(y1, y0) = FY1t,Y0t−1|Dt=1(y1,F−1
Y0t−1|Dt=1(FY0t|Dt=1(y0)))

When the researcher has access to more than two periods of panel data, one can apply a sort
of pre-test to this assumption. That is, one can check whether perfect positive dependence in
untreated potential outcomes holds between periods t− 1 and t− 2 and this can provide evidence
as to whether or not perfect positive dependence is likely to hold between periods t and t− 1. In
the application in the current paper, I find that this assumption does not hold, but it is not too
far from holding; in other words, in the absence of being displaced, workers do change ranks in
the distribution of earnings over time, but, for the most part, the change in ranks is small.

3 Identification

In the previous section, I have argued that assumptions that directly replace the unknown
copula in Equation 2.1 are not likely to hold. This section considers an alternative approach
that does not substitute for the copula in Equation 2.1 directly but limits the possibilities for the
copula.

The next assumption is the main identifying assumption in the paper.
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Copula Stability Assumption. For all (u, v) ∈ [0, 1]2

CY0t,Y0t−1|Dt=1(u, v) = CY0t−1,Y0t−2|Dt=1(u, v)

The Copula Stability Assumption says that the dependence between untreated potential out-
comes at periods t and t− 1 is the same as the dependence between untreated potential outcomes
at periods t− 1 and t− 2. This assumption is useful because the dependence between untreated
potential outcomes at period t and period t − 1 is not observed. Although, by assumption, the
counterfactual distribution of untreated potential outcomes for the treated group, FY0t|Dt=1, is
identified and the distribution of untreated potential outcomes for the treated at period t − 1,
FY0t−1|Dt=1, is identified because untreated potential outcomes are observed for the treated group
at period t−1, their dependence is not identified because Y0t and Y0t−1 are not simultaneously ob-
served for the treated group. The Copula Stability Assumption recovers the missing dependence.
This implies that the joint distribution of untreated potential outcomes at times t and t − 1 for
the treated group, FY0t,Y0t−1|Dt=1, is identified. This joint distribution is not of primary interest in
the current paper. But knowledge of this joint distribution is important for deriving tight bounds
on the distributions and parameters of interest.

To better understand the Copula Stability Assumption, it is helpful to consider some examples.
As a first example, the Copula Stability Assumption says that if untreated potential outcomes
at period t − 1 are independent (or perfectly positively dependent) of untreated potential at
period t − 2, then untreated outcomes at period t will continue to be independent (or perfectly
positively dependent) of untreated outcomes at period t− 1. Or, for example, suppose the copula
for (Y0t−1, Y0t−2|Dt = 1) is Gaussian with parameter ρ, the Copula Stability Assumption says
that the copula for (Y0t, Y0t−1|Dt = 1) is also Gaussian with parameter ρ though the marginal
distributions of outcomes can change in unrestricted ways. For example, the distribution of
earnings can shift over time or could become more unequal over time. Likewise, if the copula is
Archimedean, the Copula Stability Assumption says that the generator function does not change
over time. For Archimedean copulas with a scalar parameter having a one-to-one mapping to
dependence parameters such as Kendall’s Tau or Spearman’s Rho (examples include common
Archimedean copulas such as the Clayton, Frank, and Gumbel copulas), the Copula Stability
Assumption says that the dependence parameter is the same over time.5

Assumption 5. (Outcomes are continuously distributed)
Yt, Y0t−1 and Y0t−2 are continuously distributed for Dt = 0, 1.

Assumption 5 allows for the quantile functions in the expressions below to be well-defined. In
5One could also make the Copula Stability Assumption conditional on some covariates X. This type of assumption might

be more plausible in some applications. For example, earnings over time may be more strongly positively dependent for older
workers than for younger workers. It should be noted, however, that the unconditional Copula Stability Assumption does not
preclude covariates affecting outcomes; but it does place some restrictions on how covariates can affect the outcome of interest
and especially how the effect of covariates changes over time. One cost of this approach is that nonparametric estimation would
be significantly more challenging or strong parametric assumptions might be required to estimate the model.
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the application on job displacement, the primary restriction of the Assumption 5 is that observa-
tions with 0 earnings need to be dropped, but this is standard practice in the job displacement
literature (Jacobson, LaLonde, and Sullivan 1993; Stevens 1997; Kletzer and Fairlie 2003; Von
Wachter, Song, and Manchester 2009) and is the approach followed in the current paper as well.

Lemma 1. Under Assumptions 1, 2 and 5 and the Copula Stability Assumption,

FY0t,Y0t−1|Dt=1(y0, y
′) = FY0t−1,Y0t−2|Dt=1

(
F−1
Y0t−1|Dt=1 ◦ FY0t|Dt=1(y0), F−1

Y0t−2|Dt=1 ◦ FY0t−1|Dt=1(y′)
)

and

FY0t|Y0t−1,Dt=1(y0|y′) = FY0t−1|Y0t−2,Dt=1

(
F−1
Y0t−1|Dt=1 ◦ FY0t|Dt=1(y0)

∣∣∣∣F−1
Y0t−2|Dt=1 ◦ FY0t−1|Dt=1(y′)

)

Lemma 1 shows that the joint distribution of Y0t and Y0t−1 is identified under the Copula
Stability Assumption. This joint distribution is an important building block in developing tighter
bounds on the joint distribution of Y1t and Y0t for the treated group.

Next, I show how the Copula Stability Assumption can be used to derive tighter bounds on
the joint distribution of potential outcomes. The next result is a simple application of Fréchet-
Hoeffding bounds to a conditional distribution; it provides an important building block for con-
structing tighter bounds on the joint distribution of potential outcomes.

Lemma 2. Under Assumptions 1, 2 and 5 and the Copula Stability Assumption, bounds on the
joint distribution of treated and untreated potential outcomes for the treated group conditional on
outcomes in the previous period are given by

FLY1t,Y0t|Y0t−1,Dt=1(y1, y0|y′) ≤ FY1t,Y0t|Y0t−1,Dt=1(y1, y0|y′) ≤ FUY1t,Y0t|Y0t−1,Dt=1(y1, y0|y′)

where

FLY1t,Y0t|Y0t−1,Dt=1(y1, y0|y′) = max{FY1t|Y0t−1,Dt=1(y1|y′) + FY0t|Y0t−1,Dt=1(y0|y′)− 1, 0}

FUY1t,Y0t|Y0t−1,Dt=1(y1, y0|y′) = min{FY1t|Y0t−1,Dt=1(y1|y′),FY0t|Y0t−1,Dt=1(y0|y′)}

The next theorem is the main result for bounds on the joint distribution of potential outcomes
for the treated group.

Theorem 1. Under Assumptions 1, 2 and 5 and the Copula Stability Assumption, bounds on the
joint distribution of treated and untreated potential outcomes for the treated group are given by

FLY1t,Y0t|Dt=1(y1, y0) ≤ FY1t,Y0t|Dt=1(y1, y0) ≤ FUY1t,Y0t|Dt=1(y1, y0)
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where

FLY1t,Y0t|Dt=1(y1, y0) = E[FLY1t,Y0t|Y0t−1,Dt=1(y1, y0|Y0t−1)]

FUY1t,Y0t|Dt=1(y1, y0) = E[FUY1t,Y0t|Y0t−1,Dt=1(y1, y0|Y0t−1)]

The bounds in Theorem 1 warrant some more discussion. First, these bounds will be tighter
than the bounds without using panel data unless Y0t−1 is independent of Y1t and Y0t. But in most
applications in economics Y0t and Y0t−1 are likely to be positively dependent. On the other hand,
the joint distribution will be point identified if either (i) Y1t and Y0t−1 are perfectly positively
dependent or (ii) Y0t and Y0t−1 are perfectly positively dependent. Item (i) is very similar to the
assumption of perfect positive dependence across treated and untreated groups (though it also
includes a time dimension); Item (ii) is exactly the condition of perfect positive dependence in un-
treated potential outcomes over time used as a point identifying assumption (Heckman and Smith
1998). Together, these conditions imply that if either one of two natural limiting conditions hold
in the data, then the joint distribution of potential outcomes will be point identified. Moreover,
intuitively the bounds will be tighter in cases that are “closer” to either of these two limiting
cases. This means that even in the case where the limiting conditions do not hold exactly, one is
still able to (substantially) tighten the bounds that would arise in the case without panel data. I
provide the intuition for this point in the next example and provide a more formal proof in the
proposition that follows.

Example 2. Spearman’s Rho is the correlation of the ranks of two random variables; i.e. ρS =
Corr(F1(X1),F2(X2)). Bounds on Spearman’s Rho can be derived when two out of three joint
distributions and all marginal distributions (exactly our case) are known (Joe 2015, Theorem
8.19). Because the marginal distributions FY1t|Dt=1(Y1t), FY0t|Dt=1(Y0t), and FY0t−1|Dt=1(Y0t−1) are
uniformly distributed, their covariance matrix is given by

Cov
(
FY1t|Dt=1(Y1t),FY0t|Dt=1(Y0t),FY0t−1|Dt=1(Y0t−1)

)
=


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


Consider the case where ρ13 and ρ23 are identified and ρ12 is not known. ρ12 is partially identified
because the covariance matrix must be positive semi-definite.

This results in the condition that

ρ13ρ23 −
√
ρ2

13ρ
2
23 + (1− ρ2

13 − ρ2
23) ≤ ρ12 ≤ ρ13ρ23 +

√
ρ2

13ρ
2
23 + (1− ρ2

13 − ρ2
23)
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The width of the bounds is given by

width = 2
√
ρ2

13ρ
2
23 + (1− ρ2

13 − ρ2
23)

It is easy to show that for fixed ρ23 with |ρ23| < 1, the width of the bounds on ρ12 are decreasing
as ρ13 increases for ρ13 > 0, and width of the bounds are decreasing as ρ13 decreases for ρ13 < 0.
When either ρ13 or ρ23 is equal to one in absolute value, ρ12 is point identified. This corresponds
exactly to the case of perfect positive dependence (or perfect negative dependence) mentioned above
for point identification. The intuition of this result is that as the copula moves “closer” to perfect
positive dependence or perfect negative dependence, the bounds on the joint distribution of interest
shrink.

Proposition 1. Fix the marginal distributions FY1t|Dt=1, FY0t|Dt=1, and FY0t−1|Dt=1 and the condi-
tional distribution FY1t|Y0t−1,Dt=1. Now consider two possibilities for FY0t|Y0t−1,Dt=1 given by F1 and
F2. Assume that F1, F2, and FY1t|Y0t−1,Dt=1 are stochastically increasing and that FY1t|Y0t−1,Dt=1 ≺SI

F1 ≺SI F2 where F ≺SI G indicates that G is more stochastically increasing than F ; more stochas-
tically increasing is a common dependence ordering (see Joe (1997) and Nelsen (2007)). Then, the
bounds on the joint distribution given in Theorem 1 are at least as tight when FY0t|Y0t−1,Dt=1 = F2

as when FY0t|Y0t−1,Dt=1 = F1.

Proposition 1 is a key result in the paper. It says that the bounds in the paper get tighter
when there is stronger dependence between Y0t and Y0t−1 (under the Copula Stability Assump-
tion, this will be true when the dependence between Y0t−1 and Y0t−2 is stronger). An analogous
result also holds for Y1t and Y0t−1 – if the dependence is strong, the bounds will be tight. In
the literature, assumptions of perfect positive dependence have been made as approximations be-
cause in many applications there is strong positive dependence though less than perfect positive
dependence. Proposition 1 implies that the results in the current paper will be valid when perfect
positive dependence assumptions are violated, but the bounds will be “tight” in the case where
these assumptions are not too far from the truth. This is likely to be the most relevant case in
many applications. When the bounds are applied to job displacement later, I show that there
is strong positive dependence (both between Y1t and Y0t−1 and between Y0t−1 and Y0t−2 for the
treated group) but less than perfect positive dependence. This implies that the assumptions of
perfect positive dependence will be violated, but it also implies that the bounds can be tightened
substantially over bounds that only use the information from the marginal distributions of Y1t and
Y0t, respectively.

Just as knowledge of FY1t,Y0t−1|Dt=1 and FY0t,Y0t−1|Dt=1 leads to bounds on the joint distribution
of interest FY1t,Y0t|Dt=1, knowledge of these distributions can also be used to bound the DoTT, the
QoTT, and other parameters that depend on the joint distribution. These results are presented
next.

Sharp bounds on the distribution of the treatment effect are known in the case where there is
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no additional information besides the marginal distributions (Fan and Park 2010). These bounds
are obtained using results from the statistics literature for the distribution of the difference of two
random variables when the marginal distributions are fixed (Makarov 1982; Rüschendorf 1982;
Frank, Nelsen, and Schweizer 1987; Williamson and Downs 1990). I use these same bounds for
the conditional joint distribution.

Lemma 3. (Conditional Distribution of the Treatment Effect) Under Assumptions 1, 2 and 5 and
the Copula Stability Assumption, bounds on the distribution of the treatment effect for the treated
group conditional on the outcome in the previous period are given by

FLY1t−Y0t|Y0t−1,Dt=1(δ|y′) ≤ FY1t−Y0t|Y0t−1,Dt=1(δ|y′) ≤ FUY1t−Y0t|Y0t−1,Dt=1(δ|y′)

where

FLY1t−Y0t|Y0t−1,Dt=1(δ|y′) = sup
y

max{FY1t|Y0t−1,Dt=1(y|y′)− FY0t|Y0t−1,Dt=1(y − δ|y′), 0}

FUY1t−Y0t|Y0t−1,Dt=1(δ|y′) = 1 + inf
y

min{FY1t|Y0t−1,Dt=1(y|y′)− FY0t|Y0t−1,Dt=1(y − δ|y′), 0}

The next result provides bounds for the DoTT.

Theorem 2. (Distribution of the Treatment Effect) Under Assumptions 1, 2 and 5 and the Copula
Stability Assumption, bounds on DoTT (δ) are given by

DoTTL(δ) ≤ DoTT (δ) ≤ DoTTU(δ)

where

DoTTL(δ) = FLY1t−Y0t|Dt=1(δ) = E[FLY1t−Y0t|Y0t−1,Dt=1(δ|Y0t−1)|Dt = 1]

DoTTU(δ) = FUY1t−Y0t|Dt=1(δ) = E[FUY1t−Y0t|Y0t−1,Dt=1(δ|Y0t−1)|Dt = 1]

where FLY1t−Y0t|Y0t−1,Dt=1(δ|y′) and FUY1t−Y0t|Y0t−1,Dt=1(δ|y′) are given in Lemma 3.

Remark 1. The results of Proposition 1 also imply that the bounds on the DoTT are tighter under
the conditions given in Proposition 1. To be specific, consider two possibilities for FY0t|Y0t−1,Dt=1

given by F1 and F2 with F1 ≺SI F2 as in Proposition 1 and assume all other conditions as in that
proposition. Proposition 1 implies CL

1 ≺C CL
2 where CL

j denotes the lower bound on the copula
of Y1t and Y0t when FY0t|Y0t−1,Dt=1 = Fj for j = 1, 2. Bounds on the DoTT get tighter when the
lower bound of the copula is more concordant (Williamson and Downs 1990). This implies that
the bounds on the DoTT will be tighter when there is more positive dependence between Y0t and
Y0t−1 (which occurs under the Copula Stability Assumption when there is more positive dependence
between Y0t−1 and Y0t−2).
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Bounds on the QoTT can be obtained from the bounds on the DoTT. The upper bound on
the QoTT comes from inverting the lower bound of the DoTT, and the lower bound on the QoTT
comes from inverting the upper bound on the DoTT.

Theorem 3. (Quantile of the Treatment Effect) Under Assumptions 1, 2 and 5 and the Copula
Stability Assumption, bounds on QoTT (τ) are given by

QoTTL(τ) ≤ QoTT (τ) ≤ QoTTU(τ)

where

QoTTL(τ) = inf{δ : DoTTU(δ) ≥ τ}

QoTTU(τ) = inf{δ : DoTTL(δ) ≥ τ}

and DoTTL(δ) and DoTTU(δ) are given in Theorem 2.

Point Identification of the ATT-CPO Next, I show that the ATT-CPO is identified in
the current setup. The reason why this parameter is point identified is that it depends on the
joint distributions FY1t,Y0t−1|Dt=1 and FY0t,Y0t−1|Dt=1 which are both point identified, but it does not
depend on the joint distribution of treated and untreated potential outcomes FY1t,Y0t|Dt=1(y1, y0)
which is only partially identified. The next result provides an explicit expression for this result
that can be estimated using the observed data and the identified marginal distributions.

Theorem 4. Under Assumptions 1, 2 and 5 and the Copula Stability Assumption, the ATT-CPO
is point identified and given by

ATT-CPO(y′) = E[Y1t − Y0t|Y0t−1 = y′, Dt = 1]

= E[Y1t|Y0t−1 = y′, Dt = 1]

− E[F−1
Y0t|Dt=1(FY0t−1|Dt=1(Y0t−1))

∣∣∣ Y0t−2 = F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′))]

Theorem 4 shows that the ATT-CPO is identified and all of the terms in the theorem are
fairly straightforward to estimate. The term E[Y0t|Y0t−1 = y′, Dt = 1] is more challenging because
the sampling process does not provide draws from the joint distribution FY0t,Y0t−1|Dt=1. Under the
Copula Stability Assumption, one can use dependence information about Y0t−1 and Y0t−2 for the
treated group – and the sampling process does provide draws from this distribution. However,
the marginal distributions need to be adjusted which is the reason for the terms involving the
quantile of the distribution in Theorem 4.
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3.1 Empirical Evidence on the Copula Stability Assumption

This section provides some empirical evidence that the Copula Stability Assumption may be
valid when the outcome of interest is yearly income – a leading case in labor economics. In this
case, the Copula Stability Assumption says that income mobility, which has been interpreted as
the copula of income over time in studies of mobility (Chetty, Hendren, Kline, and Saez 2014) or
very similarly as the correlation between the ranks of income over time (Kopczuk, Saez, and Song
2010),6 is the same over time.7

A simple way to check if the copula is constant over time is to check if some dependence
measure such as Spearman’s Rho or Kendall’s Tau is constant over time.8 Using administrative
data from 1937-2003, Kopczuk, Saez, and Song (2010) find that the rank correlation (Spearman’s
Rho) of yearly income is nearly constant in the U.S. Immediately following World War II, there
was a slight decline in income mobility. Since then, there has been remarkable stability in income
mobility (See Figure 1).

Moreover, Figure 1 also confirms the intuition that there is strong positive dependence of yearly
income over time though the dependence is less than perfect positive dependence. This is precisely
the case where the method developed in the current paper is likely to (i) provide more credible
results than employing a perfect positive dependence over time assumption while (ii) yielding
much tighter bounds on the joint distribution of potential outcomes than would be available using
other methods that rely on purely statistical results to bound distributional treatment effects that
depend on the joint distribution of potential outcomes.

3.2 Theoretical Evidence on the Copula Stability Assumption

In order to estimate the joint distribution of treated and untreated potential outcomes for the
treated group, one must first identify and estimate the counterfactual distribution of untreated
potential outcomes for the treated group FY0t|Dt=1; that is, the distribution of earnings that dis-
placed workers would have had if they had not been displaced must be identified. To identify
this distribution, I use the Change in Changes (CIC) model (Athey and Imbens 2006). The CIC
model is based on the following setup:

Y0is = hs(Uis) for s = t, t− 1

6The dependence measure Spearman’s Rho is exactly the correlation of ranks. Dependence measures such as Spearman’s Rho
or Kendall’s Tau are very closely related to copulas; for example, these dependence measures depend only on the copula of two
random variables not the marginal distributions. Dependence measures also have the property of being ordered. For example,
larger Spearman’s Rho indicates more positive dependence; two copulas, on the other hand, cannot generally be ordered. See
Nelsen (2007) and Joe (2015) for more discussion on the relationship between dependence measures and copulas.

7It is also very similar to other work in the income mobility literature that considers transitions from one quintile of earnings
in one period to another quintile of earnings in another period (Hungerford 1993; Gottschalk 1997; Carroll, Joulfaian, and Rider
2007)

8It is possible for a copula to change over time and have the same value of the dependence measure, but if the dependence
measure changes over time, then the copula necessarily changes over time.
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with (i) hs(u) strictly increasing in u and (ii) Us|Dt = d ∼ FU |Dt=d for s = t, t− 1 and d = 0, 1. In
addition to these conditions, I also assume Y0it−2 = ht−2(Uit−2), Uis = Ci+Vis for s = t, t−1, t−2,
and Vs|C,Dt = d ∼ FV |C,Dt=d for all s = t, t − 1, t − 2 (this last condition implies Us|Dt = d ∼
FU |Dt=d in each time period). These extra conditions simply extend the model to three periods and
from the case with repeated cross sections to panel data. Importantly they allow the distribution
of C to differ across the treated and untreated group. I call the set of conditions above the Three
Period Panel CIC model.

Proposition 2. In the Three Period Panel CIC model given above, and under the additional
assumption that FVt,Vt−1|C,Dt=1 = FVt−1,Vt−2|C,Dt=1, the Copula Stability Assumption holds.

Proposition 2 gives the additional condition required for the Copula Stability Assumption to
hold in the CIC model. The additional condition is weak and would be satisfied if the Vs are iid,
but it can also allows for dependence of Vs over time as long as the dependence is constant.

4 Estimation

This section briefly discusses estimation and inference the QoTT and ATT-CPO under the
identification results presented above and supposing that an estimate of the counterfactual distri-
bution of untreated potential outcomes for the treated group, F̂Y0t|Dt=1, is available.

Estimating Distributions, Quantiles, and Conditional Distributions
Both the QoTT and the ATT-CPO require estimating distribution and quantile functions. I

estimate unconditional distributions by their empirical cdf:

F̂Z(z) = 1
n

n∑
i=1

1{Zi ≤ z}

To estimate quantile functions, I invert empirical cdfs:

F̂
−1
Z (τ) = inf{z : F̂Z(z) ≥ τ}

Estimating the QoTT also requires estimating conditional distribution functions. For estimating
a conditional distribution function, I use local logit (Fan and Gijbels 1996; Fan, Farmen, and
Gijbels 1998; Frölich 2006):

F̂Z|Z′(z|z′) = Λ(β̂0(z, z′) + β̂1(z, z′)z′)
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where

(β̂0(z, z′), β̂1(z, z′)) = arg max
β0(z,z′),β1(z,z′)

n∑
i=1

(
1{Zi ≤ z} log(Λ(β0(z, z′) + β1(z, z′)Z ′))

+ (1− 1{Zi ≤ z}) log(1− Λ(β0(z, z′) + β1(z, z′)Z ′))
)
Kh(Z ′i − z′)

In other words, β0(z, z′) and β1(z, z′) are parameters indexed by z and z′. Here, h is a bandwidth
satisfying h→ 0 as n→∞ and nh→∞; K is a kernel function. The local logit model guarantees
that estimates of the conditional distributions are bounded between 0 and 1 (e.g. estimates using
a local linear model would not guarantee this; see Hall, Wolff, and Yao (1999) and Hansen (2004)).
However, it is not guaranteed to be increasing in z. Thus, I use rearrangement (Chernozhukov,
Fernandez-Val, and Galichon 2010), which should have not have any effect on the asymptotic
properties of the estimators and guarantees that the conditional distributions are invertible.

Estimating the QoTT
Estimation of the QoTT is based on the results of Lemma 1, Lemma 3, Theorem 2, and The-

orem 3. Broadly speaking, estimation proceeds by (i) estimating FY1t|Y0t−1,Dt=1 and FY0t|Y0t−1,Dt=1,
(ii) plugging these into the results in Lemma 3 to obtain bounds on the conditional distribution of
the treatment effect, (iii) averaging the conditional bounds over the values of Y0t−1 for the treated
group to obtain bounds on the DoTT, and (iv) inverting the bounds on the DoTT to obtain the
QoTT. Although it takes several steps, the estimation is fairly straightforward. It is possible to
use plug-in estimators for every term except FY0t|Y0t−1,Dt=1(y0|y′). This term is identified under the
Copula Stability Assumption and Lemma 1 gives an estimable version of it though it is somewhat
complicated by requiring first step estimation of several distribution and quantile functions.

Step 1: Estimating FY1t|Y0t−1,Dt=1 and FY0t|Y0t−1,Dt=1:
FY1t|Y0t−1,Dt=1 can be estimated directly using local logit as discussed above. For FY0t|Y0t−1,Dt=1,

an estimable version of FY0t|Y0t−1,Dt=1(y0|y′) is given in Lemma 1. Once again, I estimate the condi-
tional distribution using local logit and by plugging in estimators of the unconditional distributions
in Lemma 1. Here,

F̂Y0t|Y0t−1,Dt=1(y0|y′) = Λ(θ̂0(y0, y
′) + θ̂1(y0, y

′)y′)

where

(θ̂0(y0, y
′), θ̂1(y0, y

′)) = arg max
θ0,θ1

n∑
i=1

(
1{Yit−1 ≤ z0} log (Λ (θ0 + θ1Yit−2))

+ (1− 1{Yit−1 ≤ z0} log (1− Λ (θ0 + θ1Yit−2))
)
Kh(Yit−2 − z′)

where z0 = F̂−1
Y0t−1|Dt=1◦F̂Y0t|Dt=1(y0) and z′ = F̂−1

Y0t−2|Dt=1◦F̂Y0t−1|Dt=1(y′) and n denotes the number
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of individuals in the treated group.

Step 2: Compute the Bounds on the Conditional Distribution of the Treatment Effect
To obtain the bounds on the conditional distribution of the treatment effect, one can plug in

the above estimates into the results of Lemma 3

F̂
L

Y1t−Y0t|Y0t−1,Dt=1(δ|y′) = sup
y

max{F̂Y1t|Y0t−1,Dt=1(y|y′)− F̂Y0t|Y0t−1,Dt=1(y − δ|y′), 0}

and

F̂
U

Y1t−Y0t|Y0t−1,Dt=1(δ|y′) = 1 + inf
y

min{F̂Y1t|Y0t−1,Dt=1(y|y′)− F̂Y0t|Y0t−1,Dt=1(y − δ|y′), 0}

where the sup and inf are taken over a fine grid of possible values for y.

Step 3: Average over the Conditional Bounds of the DoTT
Then, an estimate of the lower bound of the DoTT is given by

F̂
L

Y1t−Y0t|Dt=1(δ) = 1
n

n∑
i=1

F̂
L

Y1t−Y0t|Y0t−1,Dt=1(δ|Yit−1)

Similarly, the upper bound on the DoTT is estimated by

F̂
U

Y1t−Y0t|Dt=1(δ) = 1
n

n∑
i=1

F̂
U

Y1t−Y0t|Y0t−1,Dt=1(δ|Yit−1)

Step 4: Estimate the Bounds on the QoTT
The upper bound on the QoTT is given by inverting the lower bound on the DoTT, and the

lower bound on the QoTT is given by inverting the upper bound on the DoTT. Therefore,

ˆQoTT
U

(τ) = inf{δ : F̂
L

Y1t−Y0t|Dt=1(δ) ≥ τ}

and

ˆQoTT
L
(τ) = inf{δ : F̂

U

Y1t−Y0t|Dt=1(δ) ≥ τ}

Estimating the ATT-CPO
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Recall that the ATT-CPO is given by

ATT-CPO(y′) = E[Y1t − Y0t|Y0t−1 = y′, Dt = 1]

= E[Y1t|Y0t−1 = y′, Dt = 1] (4.1)

− E[F−1
Y0t|Dt=1(FY0t−1|Dt=1(Y0t−1))

∣∣∣ Y0t−2 = F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′)), Dt = 1]

(4.2)

I estimate the ATT-CPO using local linear kernel estimators. An estimate of the term in
Equation 4.1 is given by â1(y′) where

(â1(y′), b̂1(y′)) = arg min
a1,b1

n∑
i=1

[Yit − a1 − (Yit−1 − y′)b1]2Kh(Yit−1 − y′)

This is straightforward to estimate as it is simply weighted least squares. Let δ1(y′) = [a1(y′), b1(y′)]′,
Y1 be an n × 1 vector with ith component Yit, X1 be an n × 2 matrix with ith row given
by (1, Yit−1 − y′), and K1(y′) be an n × n diagonal matrix with ith diagonal element given by
Kh(Yit−1 − y′). Then, a closed form expression for the estimate of δ1(y′) is

δ̂1(y′) = (X ′1K1(y′)X1)−1X ′1K1(y′)Y1

Estimating the term in Equation 4.2 is more complicated because it depends on distribution
functions and quantile functions. These need to be estimated in a first step. With estimates of
the distribution functions in hand, Equation 4.1 can be estimated by the solution â0(y′) to

arg min
a0,b0

n∑
i=1

(
F̂
−1
Y0t|Dt=1(F̂Y0t−1|Dt=1(Yit−1))− a0 −

(
Yit−2 − F̂

−1
Y0t−2|Dt=1(F̂Y0t−1|Dt=1(y′))

)
b0

)
×Kh

(
Yit−2 − F̂

−1
Y0t−2|Dt=1(F̂Y0t−1|Dt=1(y′)))

)

Likewise, there is a closed form solution to this problem. Let δ0(y′) = [a0(y′), b0(y′)]′, Ẑ0 be an
n × 1 vector with ith component F̂

−1
Y0t|Dt=1(F̂Y0t−1|Dt=1(Yit−1)), X̂0 be an n × 2 matrix with ith

row given by (1, Yit−2 − F̂
−1
Y0t−2|Dt=1(F̂Y0t−1|Dt=1(y′))), and K̂0(y′) be an n× n diagonal matrix with

ith diagonal element given by Kh(Yit−2 − F̂
−1
Y0t−2|Dt=1(F̂Y0t−1|Dt=1(Yit−2))). Then, a closed form

expression for the estimate of δ0(y′) is

δ̂0(y′) = (X̂ ′0K̂0(y′)X̂0)−1X̂ ′0K̂0(y′)Ẑ0

4.1 Inference

Inference for the ATT-CPO is relatively straightforward as it is essentially a local linear esti-
mator of a conditional mean with the only complication that it depends on first step estimation of
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FY0t|Dt=1, FY0t−1|Dt=1 and FY0t−2|Dt=1. However, each of these will converge at the rate
√
n which is

faster than
√
nh, the rate that the ATT-CPO will converge. In practice, I choose the bandwidth

h = 1.06sd(Y0t−1)n−1/4 which undersmooths the ATT-CPO thus implying that asymptotically the
bias will be negligible at the cost of increasing the variance of the estimator of the ATT-CPO.
But this has the advantage of allowing one to use the empirical bootstrap to compute standard
errors and not needing to estimate the bias in practice.

Inference for the QoTT is more complicated and is left for future research. The reason that
it is more complicated is that it depends on first step non-parametric estimation, second step
taking the sup over a function of the first step estimations, and then averaging which is much
more non-standard that the ATT-CPO.

5 Job Displacement during the Great Recession

This section studies the effect of job displacement during the Great Recession on yearly earn-
ings of late prime-age workers. Using standard techniques, job displacement is estimated to
decrease workers earnings by 39% on average relative to counterfactual earnings had they not
been displaced. The size of this effect is 0-25% larger than existing estimates of the effect of job
displacement for all workers during severe recessions. The size of the effect is also consistent with
the ideas that (i) the effect of job displacement is larger for relatively older workers and (ii) the
effect of job displacement is larger during recessions.

Next, this section considers the distributional impacts of job displacement using the techniques
developed in the paper. There are two key findings that would not be available without these
methods. First, using the panel data methods developed in the paper provides substantially
more identifying power for distributional treatment effects such as the QoTT than is available
using existing bounds that do not exploit panel data. The reason the bounds are tighter is
that relatively strong positive dependence is observed in non-displaced earnings over time for the
displaced group of workers in the period before the Great Recession. These bounds are tight
enough to rule out the assumption of perfect positive dependence between displaced and non-
displaced potential earnings. This result implies that there is more heterogeneity (and potentially
much more heterogeneity) in the effect of job displacement than would be implied by the estimate
of the QoTT under the assumption of perfect positive dependence. The bounds also imply that
some workers have higher earnings after being displaced than they would have had if they not
been displaced; this implies that the assumption of Monotone Treatment Response (Manski 1997)
is rejected. Second, workers with higher earnings before the recession experience larger decreases
in the level of earnings following displacement, but as a fraction of earnings, the earnings loss is
roughly constant across workers with differing earnings prior to the recession.

These results can be compared to existing empirical work on job displacement. Broadly speak-
ing, there are two key findings from the job displacement literature: (i) the effect of job displace-
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ment on earnings is large, and (ii) the effect of job displacement is persistent. The current paper
considers the effect of job displacement on earnings 2-4 years following displacement which is a
somewhat shorter period than most existing work. The empirical literature on job displacement
finds that workers suffer large earnings losses upon job displacement. To give some examples,
Jacobson, LaLonde, and Sullivan (1993) study the effect of job displacement during a deep reces-
sion – the recession in the early 1980s. That paper finds that workers lose 40% of their earnings
upon displacement and still have 25% lower earnings six years following displacement. Also, it
finds little difference in the path of earnings for older, prime-age, and younger workers. Couch
and Placzek (2010) study job displacement in the smaller recession in the early 2000s. They find
an initial 32% decrease in earnings following displacement, but earnings are only 13% lower six
years after displacement. Using Social Security data that covers the entire U.S., Von Wachter,
Song, and Manchester (2009) also study the effect of displacement during the early 1980s and find
a 30% reduction in earnings upon displacement and earnings still 20% lower up to twenty years
following displacement. Because they have data on the entire country, they can compare the effect
of displacement including and excluding observations with 0 earnings in a particular year. Not
surprisingly, the effect of job displacement is larger when 0 earnings are included, but the path
of earnings is very similar – a large dip followed by some recovery but never complete recovery.
Kletzer and Fairlie (2003), using NLSY data, find that displaced workers have 11% lower earnings
three years after displacement than they would have had if they had not been displaced. That
paper uses the same dataset as in the current paper and finds considerably smaller effects of job
displacement; however, it considers the period 1984-1993 where the workers are much younger
(they would have ranged from 20-36 over those years) and the economy did not experience a deep
recession which likely work together to explain the large differences. Stevens (1997), using PSID
data, finds that workers initially lose 25% of their earnings following job displacement and have
9% lower earnings ten years later. Using the Displaced Worker Survey, Farber (1997) finds that
displaced workers lose 12% of weekly earnings on average following displacement. The effect of
job displacement on earnings is larger when there are weak labor market conditions relative to
strong labor market conditions (Farber 1997; Davis and Von Wachter 2011) which is relevant for
workers displaced during the Great Recession.

There are two potentially important sources of bias in most of the work on job displacement.
First, most work limits the sample to individuals who have positive earnings in each period. This
may be important because difficulty finding new employment is likely to be a consequence of job
displacement. In studies that use state-level administrative data such as Jacobson, LaLonde, and
Sullivan (1993) and Couch and Placzek (2010), this choice is made because they are unable to
tell whether 0 earnings represents unemployment, leaving the labor force, or moving to another
state. Under the condition that more productive displaced workers are more likely to return to
work than less productive workers, dropping individuals with no earnings is likely to cause the
estimated effect of job displacement to be biased towards 0.
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A second well known potential problem is that employers may selectively lay off their least
productive workers during recessions (Gibbons and Katz 1991). If this is the case, then compar-
ing these workers to workers that are not displaced may tend to overestimate the effect of job
displacement if these workers earnings would not have increased as much as non-displaced workers
in the absence of job displacement.

The effect of job displacement may be particularly severe for workers displaced during the Great
Recession because of the particularly weak labor market conditions in the period immediately
following the recession. From the official beginning of the recession in December 2007 to October
2009, four months after the official end of the recession, the unemployment rate doubled from 5.0%
to 10.0% (U.S. Bureau of Labor Statistics 2015b). And during the same period, the economy shed
almost 8.4 million jobs (U.S. Bureau of Labor Statistics 2015a). For late prime-age workers, ages
45 to 54, the unemployment rate doubled from 3.6% to 7.1% (U.S. Bureau of Labor Statistics
2015c).

There is recent work on the effect of job displacement during the Great Recession using the
Displaced Workers Survey Farber (2015). For all workers, the incidence of job loss was at its highest
during the Great Recession compared to all other periods covered by the DWS (1981-present).
Roughly, one in six workers report having lost a job. Compared to previous time periods, the rate
of reemployment is very low with more workers being reemployed in part time jobs. Interestingly,
Farber (2015) finds that, for workers who find full time jobs following job displacement, the effect
on earnings during the Great Recession has not been unusually large compared to other periods
– about 12%. This provides some evidence that the main channel for a differential effect of job
displacement during the Great Recession relative to other periods comes from either failure to
find a new job or moving from a full time job to a part time job.

5.1 Data

The data comes from the 1979 National Longitudinal Survey of Youth (NLSY). The main
outcome variable is log of yearly earnings in 2011. In 2011, NLSY respondents are between 47
and 54 years old. I limit the sample to individuals who worked at least 1000 hours in 2007 and
classify workers as being displaced if they left a job in 2008 or 2009 and the reason given is (i)
layoff, job eliminated or (ii) company, office, or workplace closed. This excludes other reasons for
leaving a job such as being fired, quitting, moving, or the end of temporary employment.

A main issue in the job displacement literature is how to treat individuals with 0 earnings.
Most research drops individuals with 0 earnings (for example, research that uses state-level ad-
ministrative data cannot tell the difference between actually having 0 earnings and moving to
another state). Even most research on job displacement using the PSID or NLSY tends to drop
individuals with 0 earnings, then take the log of earnings as the outcome variable in some regres-
sion (Stevens 1997; Kletzer and Fairlie 2003). I follow this same approach and restrict the sample
to individuals who have at least $1,000 in earnings in 2003, 2007, and 2011. This sample includes
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2,939 individuals, of whom 133 are displaced in 2008 or 2009.
Summary Statistics are provided in Table 1. Displaced workers and non-displaced workers have

similar education levels. There are no statistically significant differences in the fraction that have
less than high school education, graduated from high school, or graduated from college. There are
also negligible differences in gender and in their percentile score on the Armed Forces Qualification
Test (AFQT). On the other hand, there are larger differences in race; displaced workers are 12
percentage points more likely to be black (p-value: 0.01).

Table 1 also contains the path of average earnings for displaced and non-displaced workers
from 2001-2013. In 2001, average yearly earnings for displaced workers is about $41,000 while
average earnings for non-displaced workers is about $45,000 (the p-value on the difference being
statistically significant is 0.28). From 2001-2007, which are all pre-displacement years, the gap
remains roughly constant and does not display any obvious trend over time. However, by 2009,
displaced workers have experienced a large decline in average earnings. The gap in 2009 is roughly
$16,000 and almost all of this is explained by the decline in earnings of the group of displaced
workers. By 2011, the gap in earnings has increased to just over $20,000 with almost all of the
increase due to increases in average earnings for the group of non-displaced workers.9 The gap is
still $22,000 in 2013.

5.2 Baseline Results

In this section, I estimate the average effect of job displacement on the earnings of late prime-
age workers using the Change in Changes model. The results indicate that late prime-age workers
lose 39% of their earnings on average due to job displacement. This effect is the same or somewhat
larger in magnitude compared to estimates of the effect on prime age workers during the deep
recession in the early 1980s (Jacobson, LaLonde, and Sullivan 1993; Von Wachter, Song, and
Manchester 2009) which are the largest in the literature. This estimate is more than three times
as large as the estimated effect of job displacement on all workers during the Great Recession
(Farber 2015).10

I also tried several alternative approaches including Difference in Differences, Difference in
Differences where the trend can depend on covariates as in Heckman, Ichimura, and Todd (1997)
and Abadie (2005), and the Change in Changes model with covariates. The results are very similar
in all cases with estimates ranging from 36% lower earnings to 38% lower earnings.

9Recall that workers are displaced in either 2008 or 2009, so earnings in 2009 may mix pre-displacement earnings for workers
who are displaced at some point in 2009 with their post-displacement earnings which may account for the smaller earnings gap
in 2009 than in 2011 or 2013.

10The actual difference is probably not as large because the results in Farber (2015) come from workers who worked full
time before and after job displacement. This is likely to be important empirically as only 50% of workers are reemployed at
the time of their interview and 20% more are employed part time. The estimates in the current paper would not include those
that are not reemployed, but it would include those that are employed part time who, by construction, will tend to have lower
earnings. Moreover, estimates from the DWS have tended to produce lower estimated effects of job displacement on earnings
than estimates from other sources.
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5.3 The Distributional Effects of Job Displacement

This section uses the techniques developed earlier in the paper to understand the distributional
effects of job displacement. I focus on estimating the QoTT and the ATT-CPO. The QoTT is
useful for understanding heterogeneity in the effect of job displacement. It is partially identified in
the current application. The ATT-CPO is point identified and is useful for determining whether
job displacement has had a relatively larger impact on workers who previously had high or low
earnings.

There are three main findings using the methods developed in the current paper. First, the
bounds developed in the current paper provide substantially more identifying power than bounds
relying on only knowledge of the marginal distributions of potential outcomes. Those bounds are
essentially uninformative in the current application. Second, the tighter bounds in the current
paper rule out: (i) the assumption of perfect positive dependence across treated and untreated
potential outcomes and (ii) the assumption of Monotone Treatment Response (Manski 1997).
Finally, estimates of the ATT-CPO (See Figure 6) imply that workers that had higher earnings in
the previous period experience larger earnings losses due to job displacement than workers with
lower earnings in the previous period. But, as a fraction of earnings, the effect of job displacement
is very similar for workers across all initial earnings levels.

Recall that the three key requirements to estimate these distributional treatment effect param-
eters are (i) access to panel data, (ii) identification of the counterfactual distribution of potential
outcomes, and (iii) the Copula Stability Assumption. Thus, as a first step, I need to estimate the
counterfactual distribution of potential outcomes – this is what I do next.

Step 1: Estimate the counterfactual distribution of untreated potential outcomes for
the treated group

The first task to be accomplished is to estimate the counterfactual distribution of untreated
potential outcomes for the treated group – in other words, the unobserved distribution of earnings
for the group of displaced workers if they had not been displaced. Knowledge of this distribution,
in combination with the distribution of treated potential outcomes for the treated group (which is
observed), identifies the QTT. I use the Change in Changes method of Athey and Imbens (2006)
though there are a variety of other methods that could be used for the first step estimation in-
cluding the Panel DID method of Callaway and Li (2017), a version of the Change in Changes
model that allows for covariates, or by assuming selection on observables holds after condition-
ing on a lag of earnings (Firpo 2007). Figure 8 plots the QTT under each of these alternative
assumptions. The QTT results are not sensitive to changes in the underlying model for the coun-
terfactual distribution of untreated potential outcomes. This result also implies that the results
for parameters that depend on the joint distribution of potential outcomes are not sensitive to the
choice of identifying assumption in the first stage.

Estimates of both marginal distributions are presented in Figure 2, and an estimate of the
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QTT is presented in Figure 3. The QTT is negative everywhere and statistically significant for all
quantiles except the very largest (primarily due to standard errors increasing). The QTT is also
increasing across quantiles. It is tempting to interpret Figure 3 as indicating that the effect of
job displacement is largest for individuals at the lower part of the income distribution. However,
as mentioned above, job displacement appears to cause many individuals to change their rank in
the distribution of earnings which makes this interpretation of the QTT invalid. In fact, the QTT
is also consistent with the effect of job displacement being very heterogeneous across individuals;
that is, upon job displacement some individuals lose a large fraction of their earnings while others
experience less severe effects. We find more evidence for the latter interpretation of the QTT in
the next section.

Step 2: Estimate parameters that depend on the joint distribution of treated and
untreated potential outcomes

Next, I use the techniques presented earlier in the paper to estimate some parameters that
depend on the joint distribution of treated and untreated potential outcomes. First, I consider
the QoTT. Figure 4 plots (i) bounds on the QoTT under no assumptions on the dependence
between potential outcome distributions and (ii) the bounds developed in the current paper.

There are several things to notice from the figure. First, when no information besides the
identified marginal distributions is used, the bounds on the QoTT are very wide. For example,
the median of the treatment effect is bounded to be between an earnings losses of 65% and an
earnings gain of 56%. The effect of displacement among those most affected by displacement,
for example the 5th percentile of the QoTT, is estimated to be between a 64% and 98% loss of
earnings. The effect of displacement on those least affected by displacement, for example the
95th percentile of the QoTT is bounded between a 18% loss of earnings and a 630% increase in
earnings. From these bounds, one is not able to determine much. These bounds indicate that at
least 22% of displaced workers have lower earnings than they would have had if they had not been
displaced.

Next, under the Copula Stability Assumption, the bounds are indeed tighter. Earnings losses
at the 5th percentile are between 86% and 97% which implies that some individuals lose almost
all of their earnings due to displacement. The estimates of the QoTT also imply that at least
43% of individuals are worse off from being displaced. Interestingly, one can also conclude that
at least 7.0% of individuals have higher earnings after being displaced than they would have had
they not been displaced. This type of conclusion was not available without exploiting the Copula
Stability Assumption and would imply that the assumption of Monotone Treatment Response
(Manski 1997) is not valid in the current case.

Next, Figure 5 plots the QoTT under several assumptions that would lead to point identifi-
cation. First, it plots the QoTT under perfect positive dependence between Y1t and Y0t. I have
argued that this is an especially strong assumption in this case. For example, it essentially re-
stricts any previously high earnings individuals from moving into much lower paying positions
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following displacement. This identifying assumption implies the least amount of heterogeneity in
the effect of being displaced. At the 5th percentile, individuals lose 82% from being displaced.
At the 95th percentile, they lose 17%. At the median, they lose 27%, and this effect is largely
constant across most of the interior quantiles. Of course, the no-assumptions bounds cannot rule
out perfect positive dependence between Y1t and Y0t, but under the Copula Stability Assumption,
perfect positive dependence is ruled out because the bounds imply more heterogeneity than occurs
under perfect positive dependence.

Finally, I also plot the results for the case with perfect positive dependence between Y0t and
Y0t−1. This assumption results in considerably more heterogeneity in the effect of job displacement
than the assumption of perfect positive dependence between Y1t and Y0t. For example, at the 5th
percentile, the estimated effect of job displacement is a loss of 92% of earnings. At the median,
the estimated effect is 27% lower earnings per year. And at the 95th percentile, earnings are
estimated to be 44% higher than they would have been without job displacement. Further, 78%
of individuals are estimated to be worse off from job displacement and 22% are estimated to have
higher earnings than they would have had they not been displaced. The reason that the bounds in
the current paper are close to the estimates of the QoTT under this point identifying assumption
is that strong positive dependence, though not perfect positive dependence, is observed between
Y0t−1 and Y0t−2 for the group of displaced workers (Spearman’s Rho = 0.78); the dependence
between Y1t and Y0t−1 is positive but smaller (Spearman’s Rho = 0.55).

Average Treatment Effect Conditional on Previous Outcome
Figure 6 provides estimates of the ATT-CPO. The average effect of job displacement conditional

on pre-displacement earnings is not statistically significant from the ATT at any value of previous
earnings though the estimates are fairly imprecise. The point estimates range from 26% lower
earnings on average for workers who had yearly earnings of around $15,000 in 2007 to 57% lower
earnings on average for workers who had yearly earnings of around $110,000 in 2007.

These results suggest that the effect of job displacement was roughly the same across pre-
recession earnings levels as a fraction of earnings lost or perhaps somewhat larger for individuals
that initially had higher earnings. In terms of the effect of job displacement on the level of
earnings, the effect appears to be larger for individuals with higher initial earnings. The results
from the ATT-CPO are quite different from the interpretation of the QTT in Figure 3 where one
might be tempted to infer that the effect of job displacement was larger for individuals in the
lower part of the earnings distribution.

Does the Copula Stability Assumption hold for job displacement?
Figure 7 plots Spearman’s Rho Y0s and Y0s−1 in periods before the Great Recession separately

for the treated group and untreated group. Here periods are earnings separated by 4 years starting
from 1983 and going to 2011. Spearman’s Rho is very similar for both groups. Spearman’s Rho
is increasing from 1987 (around 0.5 for both groups) to 1995 (around 0.75 for both groups) and
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is constant from 1995 - 2011. In 1987, individuals in the NLSY were between 23 and 30 years
old. In 1995, they were between 31 and 38 years old. Figure 7 suggests that individuals moved
around in the distribution of earnings more in their 20s, that there is less income mobility starting
in their 30s and that the amount of mobility is the same through their 40s and early 50s. That
Spearman’s Rho is constant from 1995-2011 provides a strong piece of evidence in favor of the
Copula Stability Assumption.

6 Conclusion

This paper has developed techniques to study distributional treatment effect parameters that
depend on the joint distribution of potential outcomes. The results depend on three key in-
gredients: (i) access to at least three periods of panel data, (ii) identification of the marginal
distribution untreated potential outcomes for the treated group and (iii) the Copula Stability As-
sumption which says that the dependence between untreated potential outcomes over time does
not change over time. The last of these is the key idea that allows the researcher to exploit having
access to panel data to learn about the joint distribution of potential outcomes. This type of idea
may also be useful in other cases where the researcher has access to panel data.

Using these methods, I have studied the distributional effects of job displacement during the
Great Recession for late prime-age workers. Using standard techniques, I find that these workers
lose on average 39% of their yearly earnings following job displacement. Using the techniques
developed in the current paper, I find that this average effect masks substantial heterogeneity:
some workers lose a very large fraction of their earnings following job displacement though at
least some workers have higher earnings following displacement than they would have had they
not been displaced. Finally, I also find that workers with initially higher earnings experience larger
earnings losses from job displacement than workers with initially lower earnings, but as a fraction
of earnings, the average earnings loss is very similar across initial income levels.
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A Proofs

A.1 Proof of Result 1
The joint distribution can be expressed as

FY1t,Y0t|Dt=1(y1, y0) = P(Y1t ≤ y1, Y0t ≤ y0|Dt = 1)
= P(Y1t ≤ y1,FY0t|Dt=1(Y0t) ≤ FY0t|Dt=1(y0)|Dt = 1)
= P(Y1t ≤ y1,FY0t−1|Dt=1(Y0t−1) ≤ FY0t|Dt=1(y0)|Dt = 1)
= P(Y1t ≤ y1, Y0t−1 ≤ F−1

Y0t−1|Dt=1(FY0t|Dt=1(y0))|Dt = 1)

which implies the result and where the third equality uses the assumption of perfect positive
dependence.

A.2 Proof of Lemma 1
The first part holds under the Copula Stability Assumption as follows

FY0t,Y0t−1|Dt=1(y0, y
′) = CY0t,Y0t−1|Dt=1(FY0t|Dt=1(y0), FY0t−1|Dt=1(y′))

= CY0t−1,Y0t−2|Dt=1

(
FY0t|Dt=1(y0), FY0t−1|Dt=1(y′)

)
= FY0t−1,Y0t−2|Dt=1

(
F−1
Y0t−1|Dt=1 ◦ FY0t|Dt=1(y0), F−1

Y0t−2|Dt=1 ◦ FY0t−1|Dt=1(y′)
)

where the first equality holds from Sklar’s Theorem, the second from the Copula Stability As-
sumption and the third holds from the definition of a copula.

For the second part, the result follows using essentially the same argument as in the proof of
Theorem 4 given below and is therefore omitted.

A.3 Proof of Lemma 2
Lemma 2 follows by an application of the Fréchet-Hoeffding bounds to a conditional bivariate

distribution.

A.4 Proof of Lemma 3
Lemma 3 applies the sharp bounds on the difference between random variables with known

marginal distributions but unknown copula of Williamson and Downs (1990) (See also: Makarov
(1982), Rüschendorf (1982), Frank, Nelsen, and Schweizer (1987), and Fan and Park (2010)) to
the difference conditional on the previous outcome.

A.5 Proofs of Theorem 1 and Theorem 2
Theorem 1 and Theorem 2 follow from results in Fan and Park (2010, Section 5) and Fan,

Guerre, and Zhu (2017) which derive bounds on the unconditional distribution of the treatment
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effect when conditional marginal distributions are known. In those cases, the marginal distribu-
tions are conditional on observed covariates X; in the current paper, the marginal distributions
are conditional on a lag of the outcome Y0t−1.

A.6 Proof of Theorem 3
Theorem 3 holds because inverting sharp bounds on a distribution implies sharp bounds on

the quantiles (Williamson and Downs 1990; Fan and Park 2010).

A.7 Proof of Proposition 1
To simplify notation throughout the proof, let F1|0 = FY1t|Y0t−1,Dt=1 and let Ft−1 = FY0t−1|Dt=1.

Upper Bound:
Let FU

1 (y0, y1) denote the upper bound on the joint distribution given in Theorem 1 when
FY0t|Y0t−1,Dt=1 = F1 and likewise let FU

2 (y0, y1) denote the upper bound when FY0t|Y0t−1,Dt=1 =
F2 and under the conditions stated in the proposition. The goal is to show that FU

1 (y0, y1) −
FU

2 (y0, y1) > 0 for all (y0, y1) ∈ Y × Y .
First, it is straightforward to show that

FU
1 (y0, y1)− FU

2 (y0, y1)

=
∫
Y

(F1(y0|y′)− F2(y0|y′))1{F1(y0|y′) < F1|0(y1|y′), F2(y0|y′) < F1|0(y1|y′)} dFt−1(y′)

+
∫
Y

(F1(y0|y′)− F1|0(y1|y′))1{F1(y0|y′) < F1|0(y1|y′), F2(y0|y′) > F1|0(y1|y′)} dFt−1(y′)

+
∫
Y

(F1|0(y1|y′)− F2(y0|y′))1{F1(y0|y′) > F1|0(y1|y′), F2(y0|y′) < F1|0(y1|y′)} dFt−1(y′)
(A.1)

Next, F1|0 ≺SI F1 ≺SI F2 implies that there exist unique y∗1 = y∗1(y0, y1) and y∗2 = y∗2(y0, y1) such
that

F1|0(y1|y∗1) = F1(y0|y∗1) and F1|0(y1|y∗2) = F2(y0|y∗2)

and

for y′ > y∗1, F1|0(y1|y′) > F1(y0|y′) for y′ < y∗1, F1|0(y1|y′) < F1(y0|y′)

and

for y′ > y∗2, F1|0(y1|y′) > F2(y0|y′) for y′ < y∗2, F1|0(y1|y′) < F2(y0|y′)

Plugging these into Equation A.1 implies that the difference in Equation A.1 is given by∫
Y

(F1(y0|y′)− F2(y0|y′))1{y′ > y∗1, y
′ > y∗2} dFt−1(y′) (A.2)

+
∫
Y

(F1(y0|y′)− F1|0(y1|y′))1{y∗1 < y′ < y∗2} dFt−1(y′) (A.3)

+
∫
Y

(F1|0(y1|y′)− F2(y0|y′))1{y∗2 < y′ < y∗1} dFt−1(y′) (A.4)
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Case 1: y∗1 < y∗2. In this case, Equation A.4 is equal to 0. Moreover, in Equation A.3, since y′
is restricted to be less than y∗2, F1|0(y1|y′) < F2(y0|y′) over this range which implies

FU
1 (y0, y1)− FU

2 (y0, y1) >
∫
Y

(F1(y0|y′)− F2(y0|y′))1{y′ > y∗1} dFt−1(y′)

= F2(y0, y
∗
1)− F1(y0, y

∗
1) > 0

where the last inequality holds because F1 ≺SI F2 =⇒ F1 ≺C F2 (Joe 1997, Theorem 2.12)where
F ≺C G is the concordance ordering and indicates that F (x1, x2) ≤ G(x1, x2) for all x1 and x2
and where F and G are joint distributions with the same marginals.

Case 2: y∗1 > y∗2. In this case, Equation A.3 is equal to 0. Also, Equation A.4 is always positive
because y′ is restricted to be greater than y∗2. Equation A.2 is then given by∫

Y
(F1(y0|y′)− F2(y0|y′))1{y′ > y∗2} dFt−1(y′) = F2(y0, y

∗
2)− F1(y0, y

∗
2) > 0

Lower Bound:
Let FL

1 (y0, y1) denote the upper bound of the joint distribution given in Theorem 1 when
FY0t|Y0t−1,Dt=1 = F1 and likewise let FL

2 (y0, y1) denote the upper bound when FY0t|Y0t−1,Dt=1 = F2.
For this part, the goal is to show that FL

2 (y0, y1)−FL
1 (y0, y1) > 0 for all (y0, y1) ∈ Y ×Y . Similar

to the case for the upper bound, one can show that

FL
2 (y0, y1)− FL

1 (y0, y1)

=
∫
Y

(F2(y0|y′)− F1(y0|y′))1{F1|0(y1|y′) + F1(y0|y′)− 1 > 0, F1|0(y1|y′) + F2(y0|y′)− 1 > 0}

−
∫
Y

(F1|0(y1|y′) + F1(y0|y′)− 1)1{F1|0(y1|y′) + F1(y0|y′)− 1 > 0, F1|0(y1|y′) + F2(y0|y′)− 1 < 0}

+
∫
Y

(F1|0(y1|y′) + F2(y0|y′)− 1)1{F1|0(y1|y′) + F1(y0|y′)− 1 < 0, F1|0(y1|y′) + F2(y0|y′)− 1 > 0}
(A.5)

Because F1|0, F1, and F2 are all stochastically increasing, there exist unique y†1 = y†1(y0, y1) and
y†2 = y†2(y0, y1) such that

F1|0(y1|y†1) + F1(y0|y†1) = 1 and F1|0(y1|y†2) + F2(y0|y†2) = 1

and

for y′ > y†1, F1|0(y1|y′) + F1(y0|y′) < 1 for y′ < y†1, F1|0(y1|y′) + F1(y0|y′) > 1

and

for y′ > y†2, F1|0(y1|y′) + F2(y0|y′) < 1 for y′ < y†2, F1|0(y1|y′) + F2(y0|y′) > 1

One can plug these into Equation A.5 to obtain

FL
2 (y0, y1)− FL

1 (y0, y1)

=
∫
Y

(F2(y0|y′)− F1(y0|y′))1{y′ < y†1, y
′ < y†2} (A.6)

−
∫
Y

(F1|0(y1|y′) + F1(y0|y′)− 1)1{y†2 < y′ < y†1} (A.7)
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+
∫
Y

(F1|0(y1|y′) + F2(y0|y′)− 1)1{y†1 < y′ < y†2} (A.8)

Case 1: y†2 < y†1
In this case, Equation A.8 is equal to 0. For Equation A.7, F1|0(y1|y′) < 1 − F2(y0|y′) when

y′ > y†2 which implies that

FL
2 (y0, y1)− FL

1 (y0, y1)

>
∫
Y

(F2(y0|y′)− F1(y0|y′))1{y′ < y†1}

= F2(y0, y
†
1)− F1(y0, y

†
1) > 0

which holds because F1 ≺C F2 as implied by the assumptions in the proposition and which implies
the result.
Case 2: y†2 > y†1

In this case, Equation A.7 is equal to 0. Equation A.8 is positive because F1|0(y1|y′)+F2(y0|y′) >
1 for y′ < y†2. And Equation A.6 is equal to F2(y0, y

†
1)− F1(y0, y

†
1) which is also positive.

A.8 Proof of Theorem 4
To show the result in Theorem 4, it must be shown that

E[Y0t|Y0t−1 = y′, Dt = 1] = E[F−1
Y0t|Dt=1(FY0t−1|Dt=1(Y0t−1))

∣∣∣ Y0t−2 = F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′))]

Start with

E[Y0t|Y0t−1 = y′, Dt = 1]

=
∫
Y
y0fY0t|Y0t−1,Dt=1(y0

∣∣∣ y′) dy0

=
∫
Y
y0
fY0t,Y0t−1,Dt=1(y0, y

′)
fY0t−1|Dt=1(y′) dy0

=
∫
Y
y0cY0t,Y0t−1|Dt=1(FY0t|Dt=1(y0),FY0t−1|Dt=1(y′))fY0t|Dt=1(y0) dy0

=
∫
Y
y0cY0t−1,Y0t−2|Dt=1(FY0t|Dt=1(y0),FY0t−1|Dt=1(y′))fY0t|Dt=1(y0) dy0

=
∫
Y
y0fY0t−1,Y0t−2|Dt=1(F−1

Y0t−1|Dt=1(FY0t|Dt=1(y0)),F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′)))

×
fY0t|Dt=1(y0)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t|Dt=1(y0)))× fY0t−2|Dt=1(F−1

Y0t−2|Dt=1(FY0t−1|Dt=1(y′)))
dy0

=
∫
Y
y0fY0t−1|Y0t−2,Dt=1(F−1

Y0t−1|Dt=1(FY0t|Dt=1(y0))|F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′)))

×
fY0t|Dt=1(y0)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t|Dt=1(y0)))

dy0

Next, make the substitution u = F−1
Y0t−1|Dt=1(FY0t|Dt=1(y0)) which implies

y0 = F−1
Y0t|Dt=1(FY0t−1|Dt=1(u))
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and

dy0 = fY0t−1|Dt=1(u)
fY0t|Dt=1(F−1

Y0t|Dt=1(FY0t−1|Dt=1(u)))

Plugging these back in implies

E[Y0t|Y0t−1 = y′, Dt = 1]

=
∫
Y

F−1
Y0t|Dt=1(FY0t−1|Dt=1(u))fY0t−1|Y0t−2,Dt=1(u|F−1

Y0t−2|Dt=1(FY0t−1|Dt=1(y′))) du

= E[F−1
Y0t|Dt=1(FY0t−1|Dt=1(Y0t−1))

∣∣∣ Y0t−2 = F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′))]

A.9 Proof of Proposition 2
Using the same arguments as in Athey and Imbens (2006), one can show that

FY0t(y) = FY0t−1 ◦ ht−1 ◦ h−1
t (y)

and

FY0t−1(y′) = FY0t−2 ◦ ht−2 ◦ h−1
t−1(y′)

These two imply,

CY0t,Y0t−1|Dt=1(u, v) = P (FY0t|Dt=1(Y0t) ≤ u, FY0t−1|Dt=1(Y0t−1) ≤ v|Dt = 1)
= P (FY0t−1|Dt=1 ◦ ht−1 ◦ h−1

t (Y0t) ≤ u, FY0t−2|Dt=1 ◦ ht−2 ◦ h−1
t−1(Y0t−1) ≤ v|Dt = 1)

= P (FY0t−1|Dt=1 ◦ ht−1(C + Vt) ≤ u, FY0t−2|Dt=1 ◦ ht−2(C + Vt−1) ≤ v|Dt = 1)
= P (FY0t−1|Dt=1 ◦ ht−1(C + Vt−1) ≤ u, FY0t−2|Dt=1 ◦ ht−2(C + Vt−2) ≤ v|Dt = 1)
= P (FY0t−1|Dt=1(Y0t−1) ≤ u, FY0t−2|Dt=1(Y0t−2) ≤ v|Dt = 1)
= CY0t−1,Y0t−2|Dt=1(u, v)

where the fourth equality holds because of the additional condition in the proposition which
implies that (Vt, Vt−1, C) follows the same distribution as (Vt−1, Vt−2, C).
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B Tables and Figures

Table 1: Summary Statistics

Displaced Non-Displaced Diff P-val on Diff
Characteristics

Less than HS 0.10 0.07 0.03 0.33
High School 0.61 0.61 0.01 0.91
College 0.29 0.32 -0.03 0.50
Hispanic 0.20 0.17 0.03 0.43
Black 0.36 0.24 0.11 0.01
White 0.45 0.59 -0.14 0.00
Female 0.43 0.47 -0.04 0.40
AFQT Score 48.00 50.09 -2.09 0.47

Path of Earnings
2013 Earnings 43.09 64.92 -21.83 0.00
2011 Earnings 44.70 65.50 -20.80 0.00
2009 Earnings 44.43 60.54 -16.12 0.00
2007 Earnings 55.34 60.39 -5.05 0.35
2005 Earnings 50.07 52.83 -2.77 0.57
2003 Earnings 46.06 49.83 -3.77 0.39
2001 Earnings 40.84 45.22 -4.39 0.28

Notes: Summary statistics for individuals based on whether or not an individual
was displaced from their job in 2008 or 2009. The sample used in the table is a
restricted version of the main sample as it drops observations that are missing some
value of the variables in the table; this restriction results in a sample size of 2,391
(instead of 2939) of which 101 are displaced which amounts to 4.2% of the
observations. The variable AFQT Score is the Armed Forces Qualifying Test score
normalized to be between 0 and 100. Earnings are in thousands of dollars.
Sources: 1979 National Longitudinal Study of Youth
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Figure 1: Rank Correlation (Spearman’s Rho) of Year over Year Annual Income Dependence for All
Workers and Male Workers from 1937-2003
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Notes: The data comes from Kopczuk, Saez, and Song (2010) and replicates part of Figure 4 in that paper.
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Figure 2: Marginal Distributions of Displaced and Non-displaced Potential Outcomes for the Displaced
Group
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Notes: This figure provides estimates of the distribution of displaced potential earnings for the treated group
and the counterfactual distribution of non-displaced potential earnings for the treated group. The latter is
estimated using the Change in Changes model as described in the text.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 3: The Quantile Treatment Effect on the Treated
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Notes: This figure provides estimates of the QTT of job displacement. The QTT is estimated using the
Change in Changes model as described in the text.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 4: Bounds on the Quantile of the Treatment Effect
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Notes: The “WD Bounds” come from using only information about the marginal distributions of displaced
and non-displaced potential earnings without applying any restrictions on their dependence. The “CSA
Bounds” are the estimates coming from the method in the current paper.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 5: Plots of the QoTT under Rank Invariance Assumptions
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Notes: This figure provides plots of the QoTT under the assumption of cross sectional rank invariance (top
panel) and over-time rank invariance (bottom panel). The blue lines are the bounds on the QoTT under the
Copula Stability Assumption and are the same as in Figure 4.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 6: The Average Effect of Job Displacement Conditional on Pre-Recession Earnings (ATT-CPO)
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Notes: This figure presents estimates of the average effect of job displacement conditional on pre-recession
earnings levels. The blue line is the estimated ATT of job displacement. Pointwise confidence intervals are
computed using the bootstrap with 1000 iterations.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 7: Spearman’s Rho for every four year 1983-2007
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Notes: This figure provides estimates of Spearman’s Rho for the group of displaced workers and the group
of non-displaced workers. Spearman’s Rho is the correlation of the ranks of earnings in period t and t − 1
and depends only on the copula of earnings in period t and period t− 1. Standard errors are computed using
the block bootstrap with 1000 iterations.
Sources: 1979 National Longitudinal Survey of Youth
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Figure 8: Plots of QTTs using Alternative First Step Assumptions
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Notes: The figure plots QTTs using alternative assumptions to identify the counterfactual distribution of non-
displaced potential earnings for the group of displaced workers. The panel “CIC, No Covs” provides estimates of
the QTT using the Change in Changes model with no covariates; these are the same results as presented in Figure
3 up to differences in the underlying samples. The panel “CIC, Covs” includes covariates in the Change in Changes
models by first regressing outcomes in each period on the X variables and then running the CIC model on the
residuals as suggested in Athey and Imbens (2006). The panel “PQTT, No Covs” uses the Panel QTT method
developed in Callaway and Li (2017) without covariates and the “Panel QTT, Covs” uses the same method after
adjusting for covariates. The panel “Unconfoundedness” estimates the QTT under the assumption of unconfound-
edness using the method developed in Firpo (2007). The last two estimates require a first stage estimation of the
propensity score. It is estimated using logit and includes dummy variables for less than high school, high school,
or college education; Hispanic, black, or white race; gender; and AFQT score. The unconfoundeness results also
include the log of earnings in 2007 as an additional control. The sample includes 2,667 observations for which all
of the variables used in each specification are available. This is a subset of the data used in the main results.
Sources: 1979 National Longitudinal Survey of Youth
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