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Abstract

The intergenerational elasticity (IGE) is the most common parameter reported in the intergener-
ational mobility literature. This paper proposes a “local” intergenerational mobility parameter
(LIGE) that allows the effect of parents’ income to vary across different values of parents’ in-
come. We also extend this result to an “adjusted” local intergenerational elasticity (ALIGE)
which adjusts for differences in the distribution of observed characteristics at different values
of parents’ income. We develop the asymptotic properties of the LIGE and ALIGE, and apply
them to study intergenerational mobility using data from the PSID. We find that the intergen-
erational elasticity is much larger for low values of parents’ income (indicating less mobility)
relative to high values of parents’ income; adjusting for differences in characteristics reduces
the local IGE at all values of parents’ income as well as flattening it across different values of
parents’ income.
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1 Introduction

The intergenerational elasticity (IGE) is the most commonly reported measure of inter-

generational income mobility (see, for example, Solon (1992)). It is the coefficient from

the regression of the log of child’s income on the log of parents’ income. Large values

of the IGE indicate a relative lack of mobility and small values indicate relatively high

mobility. The IGE, however, is a global measure of intergenerational mobility and some

researchers have explored how the IGE varies across different values of parents’ income

(e.g. Landersø and Heckman (2017)) as a local intergenerational mobility measure.1

Researchers studying intergenerational mobility have also been interested in the role of

other background characteristics (e.g. race and education) that are correlated with both

parents’ income and child’s income in explaining intergenerational mobility (for exam-

ple, Bowles and Gintis (2002), Blanden, Gregg, and Macmillan (2007), and Richey and

Rosburg (2017)). This paper develops new tools for estimating a local intergenerational

elasticity after first adjusting for differences in the distribution of characteristics across

different values of parents’ income.

The interpretation of local intergenerational income elasticities is somewhat subtle.

First, they are local effects and should be interpreted as the effect on average child’s

income for marginal changes in parents’ income. They do not indicate what would happen

if parents’ income changed dramatically. Also, local intergenerational elasticities are the

effect on average child’s income (possible after adjusting for differences in covariates)

and do not answer questions like how parents’ income affects the probability that child’s

income is below the poverty line.2

We propose a semiparametric estimator of the adjusted local intergenerational elas-

ticity that allows for the effects of parents’ income and covariates on child’s income to

change across different values of parents’ income. We develop the asymptotic proper-

ties of a local linear estimator of the local intergenerational elasticity and our adjusted

1Also relatedly, Bratsberg et al. (2007) and Björklund, Roine, and Waldenström (2012) group their data by per-
centiles of parents’ income and calculate intergenerational elasticities within groups which is similar to our procedure;
Murtazashvili (2012) uses a random coefficients model to allow the effect of parents’ income to differ across individuals.

2Richey and Rosburg (2016) and Callaway and Huang (2018a) consider how parents’ income affects the entire
distribution of outcomes though the approach in those papers is substantially different from that of the current paper.
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local intergenerational elasticity. Our estimators converge more slowly than parametric

estimators though they do not suffer from the curse of dimensionality.

We apply our method to data from the Panel Study of Income Dynamics. Without

adjusting for covariates, the local IGE is relatively large and tends to decrease with

parents’ income. Adjusting for covariates decreases the local IGE across all values of

parents’ income; however, there is still a strong relationship between child’s income and

parents’ income. Adjusting for covariates also substantially flattens the local IGE across

different values of parents’ income.

2 Parameters of Interest

Let Y denote the log of child’s income, T denote the log of parents’ income, and X denote

a k × 1 vector of covariates. Next, we define our two main objects of interest.

Definition 1. The Local Intergenerational Elasticity (LIGE) is given by

LIGE(t) =
∂E[Y |T = t]

∂t

LIGE(t) measures the local effect of parents’ income on average child’s income at

a particular value of parents’ income t. This type of parameter has been considered in

Landersø and Heckman (2017). We are also interested in the effect of parents’ income on

child’s income after adjusting for differences in the distribution of observed characteristics

that are related to child’s income (e.g. parents with high income are likely to have

relatively high education as well) across different values of parents’ income. Note that

here we are not attempting to establish the causal effect of parents’ income; rather, we

are trying to imagine what average child’s income would be if the return to observed

characteristics were held fixed but the distribution of characteristics was changed to be

the same as the distribution of characteristics for all individuals in the population.

Next, note that the observed average child’s income conditional on parents’ income is
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given by

E[Y |T = t] =

∫
X
E[Y |T = t,X = x] dFX|T (x|t)

which holds by the law of iterated expectations and where X denotes the support of X.

We consider the counterfactual average outcome conditional on parents’ income where the

return to characteristics and parents’ income is held fixed but the distribution of observed

characteristics (conditional on T = t) is changed to be the distribution of characteristics

for the entire population; that is

EC [Y |T = t] =

∫
X
E[Y |T = t,X = x] dFX(x)

Given this counterfactual, we define our main parameter of interest next.

Definition 2. The Adjusted Local Intergenerational Elasticity (ALIGE) is given

by

ALIGE(t) =
∂EC [Y |T = t]

∂t

ALIGE(t) corresponds to LIGE(t) except that it occurs after adjusting for differences

in the distribution of covariates across different values of parents’ income. Our next aim

is to develop a flexible model for E[Y |X,T ] in order to ultimately estimate the ALIGE.

We make the following assumption

Assumption 1 (Smooth Coefficient Model).

Y = X ′β(T ) + U

Assumption 1 is key for implementing our method. This type of semiparametric model

is called a smooth coefficient model (see, for example, Li, Huang, Li, and Fu (2002) and

Cai, Fan, and Li (2000) as well as Callaway and Huang (2018b) for a similar model

in the context of decompositions with a continuous treatment). A leading alternative
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idea would be to estimate E[Y |T,X] nonparametrically and plug in these estimates to

obtain estimates of the ALIGE. With the moderate amount of data typically available

in applications this approach is not likely to be feasible as it suffers from the curse of

dimensionality.3 Even in a case like ours where most of the covariates are discrete, splitting

the sample for each possible combination of the discrete variables and then employing

nonparametric estimation does not appear to be a feasible strategy either due to sample

sizes being extremely small within some cells. It is straightforward to handle this case

with our approach though. Another alternative would be to assume that the conditional

expectation follows some particular parametric model, but it seems challenging in practice

to specify the right functional form; in particular, for the derivative of E[Y |T,X] to

depend on X, the functional form must include interactions between T and X which may

be difficult to choose appropriately. Our approach, on the other hand, is quite flexible.

We allow the effect of covariates and parents’ income to depend on the value of parents’

income. For example, the effect of parents’ education on child’s income can vary across

different values of parents’ income.

The next result characterizes the ALIGE under Assumption 1.

Proposition 1. Under Assumption 1,

ALIGE(t) = E[X]′
∂β(t)

∂t

Proof. First, notice that under Assumption 1,

EC [Y |T = t] =

∫
X
x′β(t) dFX(x)

= E[X]′β(t)

Taking the derivative with respect to t implies the result.

Our approach exploits the uniqueness of T among the set of conditioning variables.

3The curse of dimensionality would be somewhat mitigated from integrating out X; however, the fully nonparametric
approach is still likely to be difficult to carry out in practice.
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Importantly, unlike the fully nonparametric approach, our approach will not suffer from

the curse of dimensionality. Our estimator will converge at a slower rate than parametric

estimators, but its rate will not slow down due to adding more covariates.

3 Estimation

Estimating the LIGE is relatively straightforward. We use local linear kernel regression

and an estimate of the derivative is given by the (local) coefficient on the linear term

(also notice that the results for the LIGE are a special case of the results for the ALIGE

by taking X to only include a constant). For estimating the ALIGE, notice that a first

order Taylor approximation of the model in Assumption 1 around t implies

Y ≈ X ′β(t) + (T − t)X ′∂β(t)

∂t
+ U

Then, a local linear estimator of (β(t), ∂β(t)/∂t) is given by

β̂(t)

∂̂β(t)
∂t

 = (X′K(t)X)
−1

X′K(t)y

where X is an n × 2k matrix (where k is the dimension of X) with the ith row given

by Xi = (X ′i, (Ti − t)X ′i) and K(t) is an n × n diagonal matrix whose ith diagonal

element is given by Kh(Ti − t) = K((Ti − t)/h) where K is a kernel (satisfying some

regularity conditions; in practice, we use a trimmed Gaussian kernel though other choices

are possible) and h is a bandwidth.

Then, one can estimate the ALIGE as follows

̂ALIGE(t) =

(
1

n

n∑
i=1

Xi

)′
∂̂β(t)

∂t

In practice, we estimate LIGE and ALIGE over a grid of L possible values for t given

by t∗ = (t1, t2, . . . , tL).
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3.1 Asymptotic Theory

This section develops the limiting distribution of the LIGE and the ALIGE.

For estimating the LIGE, first let Y = g(T ) + ε where g(t) = E[Y |T = t]. Under

standard regularity conditions for local linear estimators (see, for example, Li and Racine

(2007)[Theorem 2.7]),4 one can show that

n1/2h3/2( ̂LIGE(t)− LIGE(t)) =
1

κ2fT (t)
n−1/2h−3/2

n∑
i=1

(Ti − t)Kh (Ti − t) εi

d−→ N(0, VL)

with VL = f−1T (t)κ−22 κ22E(ε2|t) and where fT (t) is the marginal density of T , κ2 =∫
v2K(v) dv, and κ22 =

∫
v2K2(v) dv.

Next, for the ALIGE, consider

˜ALIGE(t) = E[X]′
∂̂β(t)

∂t

̂ALIGE and ˜ALIGE are asymptotically equivalent because n−1
∑n

i=1Xi converges to

E[X] faster than the terms that we estimate nonparametrically. Thus, the asymptotic

behavior of ̂ALIGE is driven by the behavior of the local linear term. Under standard

regularity conditions for smooth coefficient models (see Cai, Fan, and Yao (2000) and Li,

Huang, Li, and Fu (2002)) one can therefore show that

n1/2h3/2( ̂ALIGE(t)− ALIGE(t))

= n−1/2h−3/2
n∑
i=1

E[X]′ [κ2fT (t)E[XX ′|t]]−1Xi(Ti − t)Kh(Ti − t)Ui

d−→ N(0, VA)

where VA = f−1T (t)κ−22 κ22E[X]′E[XX ′|t]−1E[XX ′U2|t]E[XX ′|t]−1E[X]. In practice, we

4Practically, the most important regularity condition is on the bandwidth. We use cross-validation to choose the
bandwidth. In practice, this will “undersmooth” for the derivative term in the local linear estimator leading to the
bias term going to zero asymptotically.
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Figure 1: The LIGE and ALIGE as a Function of Parents’ Income

●

●

● ●
●

● ●
● ● ●

●
● ●

●
●

● ●
●

●

●

0.00

0.25

0.50

0.75

1.00

10.0 10.5 11.0 11.5

Log of Parents' Income

LI
G

E

LIGE

●

●

● ● ● ●
●

● ● ●
● ● ● ●

●
●

● ●
●

●

0.00

0.25

0.50

0.75

1.00

10.0 10.5 11.0 11.5

Log of Parents' Income

A
LI

G
E

ALIGE

Notes: The left panel plots the LIGE and the right panel plots the ALIGE. In each panel, the dashed lines are pointwise
95% confidence intervals computed using the wild bootstrap with 500 iterations.
Sources: Panel Study of Income Dynamics, as described in text

carry out pointwise inference using the wild bootstrap.

4 Application

We use data from Callaway and Huang (2018a) which comes from the Panel Study of

Income Dynamics (PSID). The data consists of 3,630 child-parent measures of permanent

income along other characteristics including child’s gender and birth year, and the family

head’s gender, race, educational attainment, and veteran status. See Callaway and Huang

(2018a) for a detailed discussion of this data as well as summary statistics for the dataset.

Regressing the log of child’s income on the log of parents’ income results in an estimated

IGE of 0.603.

Our main results are presented in Figure 1. We estimate the LIGE and ALIGE over a

grid of twenty equally spaced values of t ranging from log(20, 000) (roughly equal to the

poverty line) to log(140, 000). Without adjusting for differences in covariates, the LIGE

is equal to 0.69 for children whose parents’ income was $20,000. It declines substantially

in parents’ income. For children whose parents income was $140,000, the LIGE is 0.51.

8



These results suggest that the effect of parents’ income on child’s income varies across

different values of parents’ income; standard measures of intergenerational mobility such

as the IGE cannot show this type of heterogeneity.

Adjusting for covariates somewhat diminishes estimates of local intergenerational elas-

ticities. However, even after adjusted for differences in observed covariates across different

values of parents’ income, the link between child’s and parents’ income is still strong. For

children whose parents’ income was $20,000, the ALIGE is estimated to be 0.46. Interest-

ingly, adjusting for covariates also substantially flattens estimated local intergenerational

elasticities. The point estimates of the ALIGE are very similar across all values of parents’

income (perhaps somewhat declining) and we cannot reject that the ALIGE is constant

for all values of parents’ income.

5 Conclusion

This paper has developed new “local” measures of intergenerational elasticities that allow

for the researcher to adjust for differences in the distribution of characteristics across

different values of parents’ income. We developed a flexible semiparametric estimator

of the adjusted local IGE and studied its properties. We found that our adjusting for

covariates decreased the local IGE at all values of parents’ income and tended to flatten

the local IGE as well.

There are many interesting possible extensions of the current framework. First, it

would be interesting to develop formal tests that the LIGE or ALIGE are constant across

all values of parents’ income which could be accomplished using results from the speci-

fication testing literature (for example, Hardle and Mammen (1993) and Zheng (1996),

among many others); or, relatedly, to develop uniform confidence bands for the LIGE

or ALIGE. Second, one could develop tests for whether the LIGE and ALIGE are equal

at particular values of parents’ income or across all values of parents’ income. Finally,

it would be relatively straightforward using our approach to examine the role of each

covariate in explaining the difference between the LIGE and ALIGE. This would allow
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one to decompose the gap between the LIGE and ALIGE into parts due to, for example,

differences between the distribution of race and education at particular values of parents’

income and the overall distribution of race and education. We leave these extensions to

future work.
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