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ABSTRACT 

This paper proposes a method for assessing the information content and validity of a 

mathematical structural model for which only the directions of influence among its endogenous 

and exogenous variables are known, as expressed by the sign patterns of associated arrays. The 

traditional literature on this issue presents extremely restrictive conditions under which such a 

“qualitative analysis” can be conducted. As a result, there have been very few successful 

applications of the traditional method. We propose a means of vastly expanding the scope of 

such an analysis to virtually any applied model. Our method works with the restrictions found for 

the sign patterns of complete rows and columns, or even the entire sign pattern, of the reduced 

form, rather than only individual entries. The information provided by the model is measured by 

the Shannon entropy of the possible sign patterns of the reduced form and the frequency of 

occurrence of each possibility. An example of the method is provided for Klein’s Model I. 

Although this model has been used for over fifty years for a variety of purposes, we found that 

the sign pattern of the estimated, unrestricted reduced form from the original data set was not 

consistent with the proposed, structural directions of influence among the model’s variables. 
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Qualitative Matrices and Information 

 

I. Introduction. This paper considers the enterprise of reaching conclusions about the sign 

pattern of a matrix’ inverse based upon a knowledge of the sign pattern of the matrix being 

inverted. Or more generally, as spelled out in the next section, reaching conclusions about the 

sign pattern of the matrical, reduced form of a model based upon the sign pattern(s) of the 

array(s) specified by a structural hypothesis. Traditionally, such a “qualitative analysis” focused 

upon the sign pattern of the  reduced form on an entry by entry basis. The conditions under 

which the sign of any entry of the reduced form can be determined based upon a qualitative 

analysis are extremely restrictive and are rarely found in applied models. We expand the scope of 

a qualitative analysis to include an inspection of the sign patterns of entire rows and columns of 

the reduced form, and even the sign pattern of the reduced form itself. In doing this we find that 

even though no specific entry of the reduced form may be determined by a qualitative analysis, it 

can nevertheless be shown that the sign patterns of rows, columns, or even the entire reduced 

form, may be limited, often extremely limited, to a relatively small number of allowable 

possibilities. We propose further that the “information” content of the sign patterns of the 

structural arrays can be expressed by the Shannon (1948) entropy computed from the frequency 

distribution of the corresponding, allowable forms of the sign patterns for the reduced form.1 

Expanded in this way, a qualitative analysis can be applied to a very much larger class of applied 

model, perhaps to any applied model with a fully expressed, qualitative structural form. As a 

result, structural models expressed qualitatively may now be directly compared to one another on 

the basis of their information content. The can also be brought to the data to determine if the sign 

pattern of the estimated reduced form falls outside the limits implied for it by the sign patterns of 

the structural array(s). 

 

In the next section a brief summary is provided of the basis for an interest in qualitative analyses 

in economics, the source of our interest in the subject matter. In section III an expanded 

qualitative analysis is outlined. A Monte Carlo procedure for conducting an expanded qualitative 

analysis is briefly specified in section IV. In section V an example is provided for Klein’s Model 

                                                 
1 Shannon (1948) shows how to use entropy as a measure of information. For an introduction see Pierce (1980) and 
Cover and Thomas (1991). 
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I, a model that has received repeated attention in the literature on qualitative analyses and which 

is detailed in many undergraduate and graduate econometrics textbooks. Conclusions and some 

outstanding issues are summarized in section VI. 

 

II. Background. For economists, working with a matrix’ sign pattern to see if something could 

be determined about the sign pattern of the matrix’ inverse, or more generally the reduced form 

as outlined below,  was first brought up by Samuelson (1947). The issue arose as follows: 

Samuelson proposed that economic theory should be understood to organize aspects of how the 

economy works by mathematical models expressed by  systems of equations, such as: 

 

f i (Y, Z) = 0, i = 1, 2, …, n,        (1) 

 

where Y is an n-vector of endogenous variables and Z is an m-vector of exogenous variables. 

The system is studied by the method of comparative statics. This technique assesses the effects 

of disturbances in the entries of Z on the entries of Y with respect to a referent solution as 

specified by a linear system of differentials: 

 

1 1

0, 1, 2,..., . (2)
i in m

j k
j kj k

f fdy dz i n
y z= =

∂ ∂
+ = =

∂ ∂∑ ∑  

 

In econometrics, the relationships in (1) are often assumed to be (at least approximately) linear; 

and, given this, (1) and (2) can be represented by the linear system (absent an error term), 

 

βY = γZ,             (3) 

 

where β and γ are appropriately dimensioned matrices.  (3) is usually called the structural form 

of the model. The hypothesis represented by (3) can be brought to the data by estimating the  

entries of π in what is usually called the reduced form: 

 

Y = πZ, for π = β-1γ.      (4) 
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The “scientific” content of the theory represented by (1) and (2), i.e., the degree to which it 

embodies refutable hypotheses; or, following Popper (1934), the degree to which it can be 

falsified, relates to how the hypothesis (3) limits the outcome of the estimate of (4); and, whether 

these limits are observed when  π is estimated  from data. 

 

Samuelson (op. cit.) pointed out that in economics the arrays that express the hypothesis (3) 

might not have all, or even any, entries expressed quantitatively; but instead, the information 

about each entry might only be its sign. And, we are quick to add, not even necessarily that, but 

only whether or not the value involved is nonzero. As a result (say), if only the sign patterns of 

{β, γ} were known, it becomes problematic as to what can necessarily be deduced about the 

nature of π. An immediate hope would be that, given the signs of the entries of {β, γ} and 

working through the algebra of the relationship π = β-1γ, something could be determined about at 

least some of the signs in π. The process of doing this is termed a qualitative analysis. If the sign 

of an entry of the reduced form found by a qualitative analysis is not also found when the 

reduced form is estimated, then the hypothesis presented by the signs of {β, γ} is falsified. 

 

The main burden of a qualitative analysis is finding signs in β-1 based only upon the sign pattern 

of β. Samuelson felt that the chances for a successful outcome of such a qualitative analysis were 

not promising. He argued, in effect, that it was most unlikely that knowledge of the sign pattern 

of β would enable anything to be said about the signs of any of the entries of β-1. His conclusion 

was based upon the simple observation that all of the terms of the expansions of a matrix’ 

determinant and (at least some) cofactors would be very unlikely to all have the same sign in any 

one of those expansions.  

 

III. An Expanded Qualitative Analysis.  Not withstanding Samuelson’s misgivings, a literature 

on the conditions under which a qualitative analysis could be successfully conducted evolved. 

That literature (typically) considered a special case of (3) and (4) in which n = m and γ  = I. 

Lancaster (1962) provided sufficient conditions for the form of β’s sign pattern that allowed at 

least some of the signs in β-1 to be determined. Basset, Maybee, and Quirk (1968) provided 

necessary and sufficient conditions for a successful qualitative analysis for the sign pattern of β 

put into a standard form. Lady (1983) provided similar necessary and sufficient conditions for a 
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successful qualitative analysis for β’s sign pattern put into a slightly weaker standard form, plus 

algorithmic principles for constructing such systems.2 Starting with Lancaster (op.cit), there was 

attention in the literature to the problems of conducting a successful qualitative analysis. A good 

deal of this  is cited in Hale, et al (1999). The conditions on the sign patterns of {β, γ} that allow 

at least some of the signs of the entries of π to be necessarily determined are well in-hand. 

 

None of this literature dispelled Samuelson’s original observation that a successful qualitative 

analysis was unlikely. Further, the literature on attempts to conduct a qualitative analysis is 

sparse. Of the attempts that were made that we know of (e.g., Ritschard (1983), Maybee and 

Weiner (1988), Lady (2000), and Buck and Lady (2005)) the conditions for a successful 

qualitative analysis were not satisfied (Hale and Lady (1995) is a notable exception). These 

attempts added quantitative information to help figure out the signs of the sums  of terms in the 

expansions of the determinant and (at least some) cofactors when terms of the opposite sign were 

present (as Samuelson predicted would generally be the case). Usually, as practiced, the 

qualitative analysis of an actual model provided a useful inspection of the inference structure of 

the model; however, it was in general an open ended process of considering special cases 

utilizing other information in addition to the sign patterns of {β, γ}.  

 

The major point of this paper is that this entire literature, starting with Samuelson to the current 

day, is unnecessarily restrictive and fails to take into account that a hypothesis provided by the 

sign patterns of {β, γ}, or even in part by simply knowing that some entries are nonzero and 

some of them not, can provide considerable information about (i.e., impose limitations upon) the 

signs that may be taken on by the entries of π. Indeed, based upon our past experience with 

qualitative inverses and our experience in developing the examples presented here, we conjecture 

(but do not try to prove) that any fully specified sign patterns for {β, γ} place some kind of limit 

on the sign patterns that can be taken on by π. And, given this, any such hypothesis regarding {β, 

                                                 
2 Actually, Lancaster (1962) and Lady (1983) were studying a slightly different qualitative problem: the conditions 
under which the sign pattern of  Y could be determined based upon the sign pattern of  β-1 and Z, i.e., the conditions 
under which at least one entire column of  β-1 could be determined based upon sgn β. Lady and Maybee (1983) 
showed that sometimes, although some entries of  β-1 could be signed, nevertheless no entire column could be 
signed. 
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γ} can be potentially falsified.  Further, as described below, the hypothesis can also have its 

information content measured. 

 

 In the development of concepts and examples below we limit our scope to computationally non-

singular instances of β. This is not overly restrictive from the perspective of either the 

mathematical content of the approach or its practical significance. To now, a successful 

qualitative analysis usually required that β be sign non-singular (qualitatively invertible), the 

conditions for which are very much more stringent than the computational restrictions on 

invertibility. Accordingly, the significant departure of our approach, compared to that of the 

literature cited above, is that we will consider matrices which, based upon their sign patterns 

and/or other conditions on their nature, don't, necessarily, meet the criteria for sign non-

singularity and could conceivably be singular. In general, almost all actual applied models could 

be singular, but nevertheless they virtually never are singular..  

 

In addition, to facilitate the analysis we will assume that β is irreducible, i.e., that no entries of   

β-1 must be zero and additionally that no entries of β-1 are otherwise computationally equal to 

zero. We will note the implications of relaxing these assumptions in the next section. Finally, the 

arrays (β, γ) are specified as follows: 

 

(a) which entries are zero and which not; 

(b) the signs of (at least some of) the nonzero entries; and,  

(c) distributional rules to which the values of the nonzero entries must conform.3 

 

Given this, let CQ(β, γ) be the set of all quantitative realizations of {β, γ} consistent with β 

nonsingular and the assumptions (a), (b), (c) above;  and,  let RF(sgn π) be the set of sign 

patterns for the corresponding reduced forms, where  π = β-1γ. The issues to resolve are: Given 

CQ(β, γ), what are the members of RF(sgn π); and,  what are the frequencies of their 

occurrence? 

                                                 
3 The distributional rule is in the nature of a Bayesian prior.  The only stipulation is that the prior not admit values 
for the matrix’ entries that violate the proposed sign pattern.  To facilitate the examples presented here a uniform 
distribution is assumed. It is in no way intended to limit the analysis to the assumption of uniform distributions.  
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As an example, let n = m = 2, γ = I, and the hypothesis is, 

 

sgn .β
− +⎡ ⎤

= ⎢ ⎥+ −⎣ ⎦
4 

 

Further, let the absolute values of each entry of β be randomly chosen from the uniform 

distribution, 

 

0 < abs(βij) < 10. 

 

For this simple example it is easy to see that when β is non-singular, as it almost inevitably is,  

its determinant will be positive or negative, each half of the time. Accordingly, each of the 

entries of β-1 will be all positive or all negative, each half of the time. For a traditional qualitative 

analysis, that generally would be the end of the story. The given sgn β is not qualitatively 

invertible and none of the entries in β-1 can be conclusively signed.5 Our point is that there is, 

nevertheless, quite a bit of information provided by sgn β about the characteristics of RF(sgn π).  

Specifically, β’s adjoint is entirely signed (although our ideas do not depend on this) and has all 

negative entries. As a result, sgn β-1 can only be all positive, or all negative, each half the time. A 

2 x 2 matrix, barring zeros, can have any of sixteen sign patterns. For our example,  the 

hypothesis sgn β and γ = I, limits the members of RF(sgn π) to just two of the sixteen 

possibilities, each appearing half the time. That is, the hypothesis sgn β precludes any outcomes 

for β-1 other than the ones in which the elements of β-1 are either all negative or all positive. 

 

We propose that the information provided by the hypothesis sgn β and γ = I be measured by the 

Shannon entropy of the frequency distribution found for the members of RF(sgn π). Let Fi be the 

                                                 
4 Strictly, sgn a = 1, -1, or 0 as a > 0, a < 0, or a = 0. We will use the symbols +, -, 0 instead to facilitate the 
presentation. 
 
5 Of course for this simple 2 x 2 case the fact that β ‘s adjoint is known would presumably be taken into account; 
and, similarly for larger systems, e.g., Buck and Lady (2005). Still, in general, if no entry of  π can be signed, a 
qualitative analysis has failed and is abandoned unless other, quantitative information is added. 
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frequency of the ith sign pattern that appears in RF(sgn π) and Q be the corresponding set of all 

such indices (we will show how “i” can be assigned to a sign pattern in the next section). Then,  

 

( ( , )) log( ), (5)i i
i Q

Entropy CQ F Fβ γ
∈

= − ∑  

where log(Fi) is to the base 2. For our example, with only two possible sign patterns, each with a 

50% chance of occurring, the corresponding measure of entropy is “1.” This measure is to be 

understood as follows: In general, an n x m pattern of signs, barring zeros, has n x m bits of 

information. A bit for each entry, with (say) a value of “0” for a negative entry and a value of “1” 

for a positive entry. The “message” eventually received is the outcome of estimating π and 

revealing its sign pattern. The entropy of the frequency distribution can be used to measure the 

information content of the “message,” i.e., the amount of information that the frequency 

distribution does not provide that will be “learned” from the estimation of  π. For example, if all 

possible n x m sign patterns were members of RF(sgn π); and each was equally likely, then the 

entropy of the estimated sgn π would be n x m (the maximum entropy).  That is, a priori, the 

frequency distribution told us nothing about what to expect from the estimated sgn π. 

Alternatively, if only one sign pattern had been possible (with frequency = 1), then the entropy of 

the estimated sgn π is zero, i.e., we already know the answer before receiving the “message.” For 

our example, the information provided by estimating π contains only one bit (as determined 

using (5) above), i.e., the estimation shows whether it is the all negative or all positive case. The 

remaining information, i.e., that all entries of π  have the same sign, is already provided by the 

constraints on the members of RF(sgn π) imposed by the hypothesis expressed by the sign 

patterns of {β, γ}. 

 

We would like to manipulate the measure of information to reflect the information content of the 

hypothesis represented by the model, rather than what is left to be determined by the estimation 

of π. Accordingly, we propose that the information provided by the model be given by: 

 

( ( , ))%( ( , )) 100(1 ). (6)Entropy CQINFO CQ
nm

β γβ γ = −  
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In our current example the hypothesis provides 75% of the four bits of information required to 

express the 2 x 2 sign pattern of π = β-1.  For this example, the hypothesis is falsified if any of the 

other fourteen conceivable sign patterns for π  = β-1 is exhibited by the data when π is estimated. 

 

The method is not limited only to expressions of the sign patterns of {β, γ}. Any additional 

information about these entries provided by the model embedded in (3), or conjectured by a 

practitioner,  can be used to determine what limits are placed on the members of RF(sgn π) and 

the corresponding frequencies of their occurrence. Further, less rather than more information 

may be processed. As before let n = 2, γ = I, and  

 

0 < abs(βij) < 10. 

 

But now, let, 

 

?
sgn .β

−⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

 

 

In this case, the signs of β are as before with the exception that, besides being nonzero, the sign 

of  β12 is otherwise unknown. Assume for the example that the sign of β12 can be positive or 

negative, each 50% of the time. When β12 is positive, then the possibilities for the sign pattern of 

β-1 are as before, all positive or all negative, each half of the time. When β12 is negative, then β is 

qualitatively invertible and only one sign pattern for β-1is possible. That is, 

 

1
12 0, sgn .if thenβ β − − +⎡ ⎤
< = ⎢ ⎥− −⎣ ⎦

 

 

Now, RF(sgn π) contains three sign patterns: all positive and all negative, each 25% of the time; 

and, the above sign pattern 50% of the time. Now, the hypothesis forbids thirteen of the sixteen 

possible sign patterns for π. If any of these are estimated, then the hypothesis is falsified. The 

entropy of this frequency distribution using (5) is “1.5” and the corresponding information 

content of the posited CQ(β, γ) is 
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INFO%(CQ(β, γ)) = 62.5. 

 

The entropy measure contains a fractional bit in the sense of an average, e.g., the average 

attendance last month to Tuesday’s 11am lecture was 30.5 students.  

 

It is “easy” to construct additional examples for larger systems, assuming for computational 

reasons, that they are kept sufficiently sparse in terms of the number of nonzero entries. For 

example take the case of an irreducible matrix,  β  (with γ = I) with a negative main-diagonal and 

a single inference cycle involving all of the endogenous variables, e.g., with the only nonzero 

off-diagonal entries being those of the first lower sub-diagonal and β1n. This matrical form will 

have only two terms in the expansion of its determinant, the product of the main-diagonal entries 

and the product of the off-diagonal entries. As before, assume that the absolute values of the 

nonzero terms are randomly chosen from the uniform distribution, 0 < abs(βij) < 10. For any 

value of n the adjoint of this matrical form is fully signed. Further, if the sign of the product of 

the off-diagonal entries is negative, then the sign of the determinant is always (-1)n. If the 

product of these entries is positive, then, when β is nonsingular, the determinant is positive or 

negative, each half the time. For any value of n, the corresponding RF(sgn π) has only two 

members, each appearing half the time for the value of the off-diagonal cycle positive. When the 

off-diagonal cycle is negative, there is just one member of  RF(sgn π). 

 

Nevertheless, the algorithmic principles that enable any specification of {β, γ} to be worked 

through to a specification of  the members of  RF(sgn π) and their frequencies of occurrence can 

be problematical. For example, suppose n = m = 3, γ = I, 0 < abs(βij) < 10, and, 

 

sgn .β
− + +⎡ ⎤
⎢ ⎥= + − +⎢ ⎥
⎢ ⎥+ + −⎣ ⎦
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Of the 512 conceivable sign patterns for β-1, barring zeros, only nine of them are possible for the 

inverse of β (when non-singular) with the above sign pattern.6 Looked at individually, each main 

diagonal cofactor, when non-zero, should be positive or negative half of the time. But, taken 

together, the signs of the main-diagonal cofactors are inter-correlated, since they share some 

entries of  β in common. Deriving the frequency distribution of the members of RF(sgn π) for 

this example or, for that matter, the  members and frequencies of RF(sgn π) for any system is 

case specific and for sufficiently large systems problematic. We did not attempt to formulate a 

method to solve this problem. Instead, we developed the Monte Carlo approach described in the 

next section. 

 

IV. A Monte Carlo Approach for Investigating the Characteristics of RF(sgn π). The Monte 

Carlo approach is to sample many times the possible outcomes for sgn π for the sign patterns 

proposed by CQ(β, γ) consistent with (4). For the purpose of facilitating the development of the 

algorithm,  we invoked assumptions that are not required for the analytic point of view we are 

proposing. Specifically, we assumed that β  was irreducible and that β-1 and  π did not otherwise 

have zero entries. The reason for this was a simple practicality. We wanted to base the index 

system for sign patterns, as described below, on binary numbers, i.e., “0” for “-“ and “1” for “+.” 

Were zeros allowed, the index system would have to be based on base three numbers.  There is 

nothing wrong with this; however, the binary numbers are easier to work with and there are 

many applied systems that conform to these additional assumptions, including Klein’s model, 

discussed in the next section. In any case, we do not mean in any way to limit the analysis in this 

way in its general application. 

 

Our method is as follows: 

 

(i) The sign patterns of {β, γ} are specified, including nonzeros with uncertain signs.  

 

                                                 
6 For this sign pattern all of the off-diagonal cofactors are positive. When non-zero, all of the on-diagonal cofactors 
can be positive or negative, each half  of the time. If any on-diagonal cofactor is negative, then the determinant is 
positive. If all on-diagonal cofactors are positive, then, when non-singular,  the determinant can be positive or 
negative; but, most of the time positive, since five of the six terms in the expansion of the determinant are positive. 
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(ii) For a single trial, CQ(β, γ) is sampled as the values of the nonzero entries chosen in the range 

0 < |βij, γij| < 10. The sign pattern of the nonzero entries is then applied. Nonzeros with unknown 

signs are set positive or negative each half of the time. 7 

 

(iii) If there is additional information about the entries in the two arrays, this is now imposed, 

e.g., the entries in accounting equations are often “1” or “-1.” As discussed below, for purposes 

of falsification, there are advantages to skipping this step. 

 

(iv) Given the quantitative realizations of {β, γ}, π = β-1γ is computed. 

 

(v) Given this result, the resulting sign patterns of π’s individual entries, rows, columns, and of π 

itself are recorded. For each row or column of a particular π, the sign pattern found is expressed 

as a binary number with “0” for negative and “1” for positive signs. The base 10 number 

corresponding to this binary number is computed and used as the index for the sign pattern 

found. For π in its entirety, the binary number used is formed by writing out the sign pattern of 

all of its rows written end-to-end as row vector. The base 10 number corresponding to this binary 

number is the index of the sign pattern found for all of π.  

 

(vi) For each sign pattern index observed, increment the corresponding frequency. 

 

(vii) Stop if the preset number of samples has been reached, or return to (i). 

 

To summarize the algorithm, for a single simulation, the number of samples (N) is usually set in 

the hundreds of thousands. As the simulation is under way, the sign patterns for each row and 

column of π that appeared and their frequency of occurrence are tabulated. For sufficiently small 

systems8 (say, n x m < 26), the sign patterns of π itself and their frequency of occurrence are also 

tabulated and the information and entropy measurements outlined above are computed.  

                                                 
7 A similar method was reported on in Lady and Sobel (2006). In that application only a tabulation of  signs of the 
entries of  β-1  was recorded. 
 
8 In principle the system can be of any size.  We were limited by the size and speed of our computer. 
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For purposes of falsification, the sign pattern of a particular data-based estimate of π, denoted π̂ , 

is specified. If the signs of any of π̂ 's rows or columns, or of π̂  itself, do not appear across 

sometimes millions of samples of CQ(β, γ), then the hypothesis being tested is, or at least 

appears to be, falsified. This, even though no individual sign of the reduced form failed to 

appear. 

 

From the standpoint of falsification, we are reluctant to impose specific, quantitative values on 

any of the entries as identified in step (iii) above, even when these are known. When only 

processing the sign patterns of the arrays, then the simulation can draw any member of CQ(β, γ) 

subject to scaling. For example, take any β whatsoever.  Let MAX be the largest absolute value 

of any of its entries. Given this, form β* by multiplying each entry of β by, say, (1/MAX). The 

sign pattern of the inverse of β* is the same as that of β. And, even if β  cannot be sampled due to 

the distributional rules specified for the values of the entries of β , β* can be. As a result, the 

member of  RF(sgn π) corresponding to β  will not (necessarily) be missed by our sampling 

procedure. Specifically, the members of RF(sgn π) with restrictions added in (iii) above will also 

be members of RF(sgn π) without the restrictions added. Accordingly, if a row, column, or entire 

sign pattern of π does not appear without the restrictions in (iii) added, it would not appear with 

the restrictions added.  The same conclusion holds for the posited sign pattern of γ, its rescaling, 

and the possible outcomes for the sign pattern of π. 

 

The “risk” of the method is to fail to find a member of RF(sgn π) that actually exists, but only 

with an extremely small frequency.  Failing to find a member of RF(sgn π) could result in 

incorrectly estimating the entropy of the system and misjudging the information content of the 

proposed model.  Also, failing to find a member of RF(sgn π) could result in incorrectly 

falsifying a model, which would be tantamount to a Type I error in classical statistics.  There are 

three parts to the response to this issue.  First, since the Monte Carlo method used is essentially a 

process by which the empirical probability distribution of sign patterns is built up, one must 

explore the statistical properties of this distribution estimator. Second, the estimator for the 

entropy of the model should have desirable statistical properties as well.  Third, even if the 
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empirical density has desirable statistical properties, what is known about the probability of the 

Monte Carlo method missing a possible outcome of RF(sgn π)? 

 

The possible sign patterns for a given row or column of π, or even the entire matrix, is a 

multinomial distribution with unknown proportions. The Monte Carlo method used to generate 

the data on the proportions of sign patterns of π is a maximum likelihood estimator. As a class, 

maximum likelihood estimators are known to be unbiased estimators for the first moment, the 

case here.  They are also known to be efficient and consistent. 

 

Regarding the second point, from equation (5) ( )( ( , )) logi i
i Q

Entropy CQ F Fβ γ
∈

= −∑  is an 

estimate of the entropy of a system calculated from a sample of size N, an event set of q 

outcomes of π determined by the number of indices in Q, and Fi is the observed relative 

frequency of a member of the event set. The mean and variance of the entropy estimator 

(Basharin(1959)) are 

 

 

⎟
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⎞⎜
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⎝
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i
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i

n
1)(EntropyFlogF

n
1))(ntropyÊ(Var  

The entropy estimator underestimates the actual entropy, but the bias always can be made 

smaller by choosing the sample size to be larger, and it vanishes in the limit.9  Also, since the 

sample size is in the denominator of the variance, the entropy estimator is statistically consistent. 

 

The final issue is the probability of missing the ith sign pattern in the Monte Carlo experiment. 

Chebyshev's inequality, ( ) 2

2
i

ii
t

tEFFPr σ
≤>− , can be used to put an upper bound on that 

                                                 
9 Or at least it gets sufficiently small in principle. For larger systems, the required number of samples may be large 
compared to the available computing capability. 
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probability. “t” is an arbitrarily chosen small number and 2
iσ  is the variance of the ith parameter 

in the multinomial process that generates the data. The variance for the ith term is given by 

n
)F1(F ii − .  Since the number of samples is in the denominator, the probability of missing a sign 

pattern can be made smaller by making N larger (see note 9).10.  

 

 

V. Falsifying Klein’s Model I. Klein’s model (Klein (1950)) is an over-identified,11 

econometric model of the U.S. economy. It has been considered in the literature for a variety of 

methodological and pedagogical purposes.12 Maybee and Weiner (1988), and later Lady (2000), 

analyzed the qualitative properties of β (for the model expressed in the form of (3) above). 

Generally, both of these efforts were intended to demonstrate how to cope with the fact that the 

sign pattern for β as proposed for the model did not submit to a successful qualitative analysis. 

Instead, it was shown how to use additional, quantitative information in signing some of the 

entries of β-1. None of this was focused on testing if the model’s specification survived an 

estimation of the reduced form as was done in Buck and Lady (2005). 

 

Klein’s model is given by, 

      

 

  ZY γβ = , where 

 

                                                 
10 For large systems, notwithstanding these observations, the magnitudes of the number of possible sign patterns for 
π (even barring zeros), the possible degree to which some sign patterns might be unlikely, and a correspondingly 
sensible size for the number of samples taken are all issues that would benefit from future innovation. 
 
11 A model is over-identified if the estimatable reduced form provides too many linearly independent equations in 
the unknowns of the structural model. 
 
12 Klein's model was the basis for much of the macroeconomic policy modeling spawned by the Cowles Foundation. 
Goldberger (1964), Berndt (1991) and Greene (2000) all used it pedagogically to demonstrate alternative 
econometric approaches for dealing with the identification problem at the time of estimation.  
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In Klein’s model the endogenous variables are private consumption (C), investment (I), the 

private wage bill (W1), income (Y), profits or nonwage income (P), the sum of private and 

government wages (W), and private product (E); and the exogenous variables are: the 

government wage bill (W2), lagged profits (P-1), end of last period capital stock (K-1), lagged 

private product (E-1), years since 1931 (Year), taxes (TX), and government consumption (G). 

 

The sign patterns of the arrays proposed by Klein are as follows, 
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13    (7) 

 

The array β is not qualitatively invertible and no entry in β-1 can be signed.  Nevertheless, based 

on a variety of assumptions in Buck and Lady (2005), a small number of signs in the reduced 

form could be signed, a priori. Further, these signs appeared in the estimated reduced form 

(given below) based on Klein’s original data set for the years 1921 – 1941. Accordingly, the 

model was not falsified by these findings. 

 

                                                 
13 All of the unknown entries were hypothesized to be positive except b3, which was hypothesized to be negative. As 
a result, the hypothesized γ23 > 0. 
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14 

 

When data from more recent years were combined with the original Klein data to provide a 

sample for the period 1921- 2000 some of the estimated entries of π changed sign, falsifying the 

structural hypothesis.(Buck and Lady (2005)). This was generally attributed to the transitory 

nature of economic relationships and, given the austerity and highly aggregated nature of Klein’s 

model, it was proposed that there was a reasonable likelihood that some of the directions of 

influence between exogenous and endogenous variables would change over many decades of 

economic activity.  

 

The issue of falsification of Klein’s original specification using the above reduced form can be 

revisited in terms of the limitations on the members of RF(sgn π) imposed by the structural 

hypothesis presented by the sign patterns of {β, γ} in (7). The sign pattern of the entire reduced 

form itself is expressed by 49 bits. This made the range of base 10 indices for the sign patterns 

that could be taken on by the entire reduced form matrix π to be from 0 to (249 – 1). The upper 

values in this range were too large to represent as integers within the processing platform we 

were using for the Monte Carlo simulation. As a result, we did not tabulate the occurrence of 

entire sign patterns of the reduced form for each sample drawn. Instead, we tabulated the sign 

patterns for each row and each column of π. Each of these is expressed by seven bits; so that, 

there are 128 possible sign patterns for each row and each column of π.15 

 

                                                 
14 This is the unrestricted reduced form estimated by Goldberger (1964). 
 
15 We did conduct a “simple search” by sampling {β, γ}, computing π = β-1γ, and then checking to see if the sign 
pattern found conformed to that given above, all without keeping track as to what sign patterns were otherwise 
found. The sign pattern given in (8) was never found. As given below, we checked the algebra for π = β-1γ and found 
out why. 
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Inspection of the specification of the model above shows that there are only 27 non-zeros in the 

arrays {β, γ}. Of these, ten are estimated.  The remainder are either “1” or “-1” appropriate to 

accounting relationships among the model's endogenous and exogenous variables. We wanted to 

take this information into account; however, we were concerned about the scaling issue noted 

above, since we had no basis for setting the bounds on the other, estimated entries, given that 

some entries were pegged to be “1” or “-1.”  To avoid this issue, the absolute value of β11 (which 

by definition is equal to -1) was chosen in the open interval 0 < β11 < 10 as were all the other non 

zero entries; and then, all of the other entries equal to “1” or “-1” per the above specification, 

were set equal to β11 with the appropriate signs applied. Each time the simulation run was for 

1,000,000 draws from CQ(β, γ) subject to the above rules (actually, many millions of trials were 

run while developing the simulator, all with the same results, as given below).  Below are the 

results for one simulation for a sample of 1,000,000 draws for {β, γ). The results are presented 

first for the row sign patterns found for the reduced form (Table 1), then for the column sign 

patterns found (Table 2); and finally, a comparison of these findings to the non-restricted 

reduced form estimation results given in (8) above (Table 3). 
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Table 1. Reduced Form Sign Pattern Frequency Distributions By Row for Sign Patterns That Appeared At Least Once 
RowNum        Row# 1        Row# 2        Row# 3        Row# 4        Row# 5        Row# 6        Row# 7        Row Sign Patterns 
 0             0             .025181       0             0             0             0             0             -  -  -  -  -  -  -  
 2             0             .040643       0             0             0             0             0             -  -  -  -  -  +  -  
 14            0             .062238       0             0             0             0             0             -  -  -  +  +  +  -  
 16            0             0             0             .002902       .100672       0             0             -  -  +  -  -  -  -  
 18            .009805       .021949       .016365       .01371        .093798       .006635       .082676       -  -  +  -  -  +  -  
 30            .084651       .123596       .252873       .063636       .218843       .082433       .186562       -  -  +  +  +  +  -  
 32            0             .075491       0             0             0             0             0             -  +  -  -  -  -  -  
 33            .107076       .176939       .139029       .114448       .176939       .07908        .197563       -  +  -  -  -  -  +  
 34            0             .031206       0             0             0             0             0             -  +  -  -  -  +  -  
 45            .034089       .009235       .095306       .02853        .009235       .033534       .036772       -  +  -  +  +  -  +  
 46            0             .033009       0             0             0             0             0             -  +  -  +  +  +  -  
 64            0             .012053       0             0             0             0             0             +  -  -  -  -  -  -  
 66            0             .021837       0             0             0             0             0             +  -  -  -  -  +  -  
 78            0             .014535       0             0             0             0             0             +  -  -  +  +  +  -  
 80            .036831       0             0             .047804       .066372       0             0             +  -  +  -  -  -  -  
 82            .040228       .021458       .012959       .04802        .057005       .022689       .02976        +  -  +  -  -  +  -  
 94            .287898       .071775       .153387       .259512       .09113        .323827       .136586       +  -  +  +  +  +  -  
 96            0             .054319       0             0             0             0             0             +  +  -  -  -  -  -  
 97            .257444       .179439       .288041       .395943       .179439       .34799        .312828       +  +  -  -  -  -  +  
 98            0             .01371        0             0             0             0             0             +  +  -  -  -  +  -  
 109           .040813       .006567       .04204        .025495       .006567       .103812       .017253       +  +  -  +  +  -  +  
 110           0             .00482        0             0             0             0             0             +  +  -  +  +  +  -  
 112           .088163       0             0             0             0             0             0             +  +  +  -  -  -  -  
 126           .013002       0             0             0             0             0             0             +  +  +  +  +  +  -  
Sum Freq       1             1             1             1             1             1             1             
Entropy        2.84005       3.68937       2.5232        2.45578       2.94055       2.31845       2.5554        
INFO%          59.428        47.295        63.954        64.917        57.992        66.879        63.494        
Row Count      11            20            8             10            10            8             8             
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Table 2. Reduced Form Sign Pattern Frequency Distributions By Column for Sign Patterns That Appeared At Least Once 
ColNum        Col# 1        Col# 2        Col# 3        Col# 4        Col# 5        Col# 6        Col# 7        Column Sign Patterns 
 0             .089651       .191837       .218361       .273581       .273581       .329477       .281765       -  -  -  -  -  -  -  
 2             .032846       0             0             0             0             0             0             -  -  -  -  -  +  -  
 4             0             0             .111055       0             0             0             0             -  -  -  -  +  -  -  
 18            0             0             0             .083153       .083153       0             0             -  -  +  -  -  +  -  
 27            0             0             0             0             0             0             .124994       -  -  +  +  -  +  +  
 32            0             .076926       0             0             0             0             0             -  +  -  -  -  -  -  
 36            .069287       .153819       .110006       .182813       .182813       .234939       .153819       -  +  -  -  +  -  -  
 44            .032257       0             0             0             0             0             0             -  +  -  +  +  -  -  
 46            .01158        0             0             0             0             0             0             -  +  -  +  +  +  -  
 59            0             .036831       0             0             0             0             0             -  +  +  +  -  +  +  
 64            .003878       .013002       0             0             0             0             0             +  -  -  -  -  -  -  
 66            .027564       0             0             0             0             0             0             +  -  -  -  -  +  -  
 68            0             0             .124994       0             0             0             0             +  -  -  -  +  -  -  
 74            .147654       0             0             0             0             0             0             +  -  -  +  -  +  -  
 82            0             0             0             .08328        .08328        0             0             +  -  +  -  -  +  -  
 83            0             0             0             0             0             .050706       0             +  -  +  -  -  +  +  
 91            .297894       .210426       .153819       .234211       .234211       .159041       .221061       +  -  +  +  -  +  +  
 95            0             0             .152993       0             0             0             0             +  -  +  +  +  +  +  
 108           .006609       0             0             0             0             0             0             +  +  -  +  +  -  -  
 110           .082247       0             0             0             0             0             0             +  +  -  +  +  +  -  
 123           0             .098798       0             0             0             0             0             +  +  +  +  -  +  +  
 127           .198533       .218361       .128772       .142962       .142962       .225837       .218361       +  +  +  +  +  +  +  
Sum Freq       1             1             1             1             1             1             1             
Entropy        2.88412       2.69636       2.76734       2.44841       2.44841       2.14345       2.26602       
INFO%          58.798        61.481        60.467        65.023        65.023        69.37901      67.62801      
Col Count      12            8             7             6             6             5             5             
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In tables 1 and 2, above, the first column gives the base 10 index of a row or column sign pattern 

that appeared at least once as a member of RF(sgn π) corresponding to a sample of 1,000,000 

trials of the quantitative realizations of {β, γ} as described above. The next seven columns show 

the frequency with which the given sign pattern appeared for each row (Table 1) or column 

(Table 2). The last display or panel of each table is the sign pattern itself. The last rows show the 

sum of the frequencies (an error check); the entropy of the frequency distributions for each row 

or column using (5) above; the corresponding information content of the structural form for each 

row or column using (6) above; and finally, the number of sign patterns that were found for each 

row and column out of the 128 possibilities for a pattern of seven signs, barring zeros. 

 

Although the appearance of entire specific reduced form sign patterns was not cataloged due to 

the problem of assigning a base 10 index to all of the possible 7 by 7 sign patterns, barring zeros, 

the cataloging of sign patterns for rows and columns allows an upper bound to be placed on the 

total number of members of RF(sgn π). For example, assuming that the sign patterns found for 

each column as given in Table 2 are the only possible sign patterns, given the hypothesis (3) for 

Klein’s model, then at most the number of possible reduced forms would be the product of the 

numbers found for each column: 12 x 8 x 7 x 6 x 6 x  5 x 5 = 604,800. This outcome follows, if 

the sign pattern for each column appears independent of the sign patterns for other columns 

(which it surely does not). For this upper bound, entropy is maximized if each possibility is 

equally likely. The value of the entropy for this case is the log base 2 of the upper bound on the 

possible sign patterns for π, log2(604800) = 19.2. Applying (6) to this result gives that the lower 

bound on the amount of information provided by the hypothesis is: INFO% = 60.8. As it works 

out for this example, this result using the data on columns found is the binding result, compared 

to that for rows, since fewer possible reduced forms are allowed by the numbers of column sign 

patterns found. 
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In Table 3 below, the sign patterns of the row and columns of the estimated reduced form found 

from the 1921-1941 annual data given in (8) are compared to the sign patterns found by the 

simulation.  
 

 

 

 

Table 3. Simulation Results for the Un-Restricted Klein Model 1 Reduced Form 
 W2 P-1 K-1 E-1 Year TX G FREQ. 

C -* + - + + - + .0341 
I - + - - + - + 0 

W1 - + - + + - + .0953 
Y - + - + + - + .0285 
P - + - + + - + .0092 
W - + - + + - + .0335 
E - + - + + - + .0368 

FREQ .0897 .2184 .2184 0 .1430 .3295 .2184  
 

 

In the body of Table 3 the sign pattern of the un-restricted reduced form given in (8) above is 

reiterated. The entries in the last column give the frequencies with which the row sign pattern 

appeared in the sample of 1,000,000 trials reported on in Tables 1 and 2. The entries in the last 

row give the same information for each column. Notably, the sign pattern found for row two of 

the estimated reduced form was not found by the simulation nor was the sign pattern for column 

four. These results falsify the hypothesized sign patterns given above for the structural arrays {β, 

γ}.  

 

For row two, inspection of the row sign patterns found by the simulation revealed that in no case 

did  π24 and π25 have opposite signs, as called for by the unrestricted reduced form estimate.  A 

quick check of the algebra for   π = β-1γ revealed that: 

 

π24 = [β-1]23 γ34 and π25 = [β-1]23γ35. 
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Since γ34 and γ34 are both negative, π24 and π25 cannot have opposite signs, independent of 

magnitudes. This circumstance falsifies the hypothesis. 

 

For column four, inspection of the row sign patterns found by the simulation revealed that in no 

case did π24 and π54 have opposite signs, as was found for the unrestricted reduced form estimate. 

For these entries of π,  

 

π24 = [β-1]23γ34 and π54 = [β-1]53γ34. 

 

From the simulations of β-1 there was evidence that [β-1]23 and [β-1]53 have the same sign, 

independent of magnitudes.  The evidence was in the form of positive entries for those terms 

with equal and high frequency  (0.79832). For many simulations, the frequency of positive 

values for these entries was always the same.  

 

Since β is a sparse matrix it was possible to write out its inverse and determine an analytic 

explanation for the falsification based on the non-occurance of the observed estimated reduced 

form in the Monte Carlo simulations.  Apart from being multiplied by the reciprocal of the 

determinant, the inverse is given by (9a), and its determinant is given by (9b). The hypothesis 

specified that b1>0, therefore it must be the case that [β-1]23 and [β-1]53 have the same sign since 

one is just a multiple of the other, and hence π24 and π54 also have the same sign. Indeed, (9a) 

shows many instances when certain sets of entries in β-1 must have the same sign.  Moreover, 

apart from the sign of the determinant (which is contingent on the magnitudes of the unknown 

a's, b's and c's) there are many instances of same sign restrictions in π (equation 10) for which the 

Monte Carlo provided ample evidence and which restrictions are not imposed at the time of 

estimating the reduced form in standard practice.  In more complex systems this sort of post hoc 

analytic examination would be extremely difficult, if not impossible, but for which the Monte 

Carlo method outlined here provides evidence. 
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An important question is that of how the proposed falsification procedure based on Monte Carlo 

simulation of model sign patterns brings more to the analytic table than the classical econometric 

approach. Consider the pedagogy found in Goldberger(1964) and which is propagated and 

expanded upon in Berndt(1990) and Greene(2008). 

 

In the empirical results reported by Goldberger(1964, pps. 325 and 368) the difference between 

the unconstrained reduced form estimates and the reduced form derived from the constrained ML 

estimates of the structural model differ in sign in eight out of forty nine instances, all involving 

only three of the seven exogenous variables.  There are differences in magnitude (i.e. one 

coefficient estimate is two or more times as large as the other) for seventeen out of forty one 

cases where the unrestricted and constrained coefficients have the same sign, all involving only 

four of the seven exogenous variables. Noting "there are substantial differences in parameter 

estimates based on the unrestricted and restricted reduced form estimation," Berndt(1991) takes 

these differences as warranting a statistical test of the zero restrictions in the matrix γ of the 

structural model. In a joint test of the restrictions Berndt rejects the hypothesis, but does not 

argue that the model has been falsified. 

 

Reasoning from the multiplicity of estimates (contingent on the estimator used) of the structural 

parameters, Greene (2008) comes to the same conclusion that a test of the zero restrictions is 

necessary.  He finds that the zero restrictions are rejected only for the third or wage equation of 

the model and subsequently argues that that equation may be mis-specified.  Like Berndt, he 

does not argue that the model has been falsified. 

 

Having found a problem with the zero restrictions, neither author notes that there is only one 

restricted-unrestricted reduced form pair that are statistically different from one another.  This 

begs the question of whether the conduct of the test of hypothesis regarding the zero restrictions 

was motivated by their pedagogical interest or was a prescriptive test based on the observed 

empirical results.  In any case, their approach leaves open the question of whether the model has 

been falsified. Comparatively, the results we present here are decisive: The hypothesized sign 

patterns for{β, γ} are impossible, given the sign pattern of the estimated reduced form.
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VI. Conclusions and Pending Issues. The qualitative analysis that we have proposed here 

enables virtually any structural hypothesis expressed at the level of sign patterns, or even in some 

cases only identifying zero and nonzero entries of the structural arrays, to be assessed for its 

information content; and, ultimately, whether or not it is consistent with the data. Compared to a 

traditional qualitative analysis, the expansion of applicability is vast. We believe that such an 

expanded qualitative analysis has the potential to substantially change the assessments made of 

actual models; and, hopefully, result in an increased quality, or at least a better understanding of 

the quality, of applied systems. 

 

Not-withstanding the promise of our proposed methods, there are substantial theoretical and 

practical issues that remain to be confronted and resolved. In terms of the theory, the central  

issue to resolve is whether or not any fully specified sign patterns for {β, γ} will result in some 

kind of limitation on the members of  RF(sgn π). Our experience in developing examples and 

working with the Monte Carlo simulation suggests that there will always be such limits. If so, 

this would mean from the standpoint of falsification and information content, the expanded 

qualitative analysis that we have proposed will have universal applicability. 

 

There are also substantial practical problems that we have not approached. Investigating the 

relationship between the signs of {β, γ} and the corresponding nature of RF(sgn π) could be 

expressed exactly by deriving the distributional rules for the values of π = β-1γ from the 

distributions for the entries of {β, γ}.  Further, the distributional rules for (β, γ) may be expressed 

in a substantial variety, compared to our use of uniform distributions; and further, might 

themselves have interesting and important bases for their nature, based upon analysis of the 

appropriate data. Finally, there may be more efficient, or faster, or otherwise better 

computational routines to use along the lines of the Monte Carlo approach utilized here. And, in 

connection with this, there is a potential severity of difficulty in applying these ideas to very 

large systems that suggests a need for computational innovation.    
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It is our hope that a review of the ideas for an expanded qualitative analysis that we have 

provided here will excite an interest in approaching and resolving these, and other related issues, 

in the general enterprise of assuring the quality of applied systems. 
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