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Abstract

In this paper we argue that ambiguity, combined with social opinion formation can be
represented as part of a game-theoretic equilibrium concept that transcends the standard
Nash equilibrium concept, applied to a model of the tragedy of the commons. Our mod-
eling can shed some light on the international environment crisis and the relevant ongoing
international negotiations. We conclude that social opinion formation in most cases has
a significant impact on equilibrium common property resource usage.
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1 Ambiguity, the environment and social opinion formation

The current climate debate and the negotiations over global emission reductions bring up

multiple pressing questions for economists and game theorists on the issue of using common

property resources. Economists can contribute to the public debate by clarifying the incen-

tives of decision makers. In this paper we discuss an innovative approach for understanding

the influence of public discourse on individual incentives and behavior. Decision makers, be-

ing members of certain populations of economic agents, are usually strongly influenced by

public opinion formation regarding global warming and the effects of emission abatement on

environment and the economy. This, in turn, affects the decision making processes concern-

ing the usage of common resources. In particular, it affects global pollution abatement policy

formation.

More specifically, we take a step towards the development of a tractable model of the

influence of public discourse on equilibrium behavior in a common resource game. Our ap-

proach takes us away from standard game theoretic equilibrium concepts such as Nash and

Bayesian equilibrium. Instead we focus on the direct incorporation of ambiguity and social

influence on game theoretic decision processes. In particular, we show that certain social

influences—public opinion formation in particular—might guide decision makers to a more

efficient equilibrium state than standard concepts would support.

We use the standard common property resource or tragedy of the commons game as a

vehicle to study the incentives involved in global emission reductions. The tragedy of the

commons acts in many respects as a metaphor for the relevant issues. In this normal form

game there is a stark difference between the socially optimal or Pareto efficient state and the

standard Nash equilibrium state in which players act only in their self-interest. This fun-

damental problem has already been addressed extensively in the literature on environmental

economics.

In that literature, authors have examined a linear model of common property resources

management, with emphasis on self-enforcing and stable international environmental agree-

ments (Barrett, 2003; Ulph, 2004; Kolstad, 2007). These contributions study coalition forma-

tion and dynamic negotiation processes, incorporate uncertainty with respect to the marginal

cost of the use of the commons, and introduce dynamic accumulation of pollution stock.

However, they use a restricted set of game theoretic equilibrium concepts, such as Nash equi-

librium and subgame perfection.

A drawback of these standard equilibrium concepts is that all of these equilibrium con-

cepts assume that individuals evaluate outcomes by means of Subjective Expected Utility
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(SEU) theory (Savage, 1954). Well-established experimental evidence urges the considera-

tion of departures from expected utility. The evidence presented by, e.g., Ellsberg (1961) and

Camerer and Weber (1992) questions whether standard probabilities can capture the nature of

individual beliefs. Further, Eichberger, Kelsey, and Schipper (2006) discuss an experiment in

which subjects experience ambiguity due to the identity of the other player in a two-player

game, who could be sophisticated or not; when facing the unsophisticated player, subjects felt

more ambiguous and played more conservatively.

A major alternative to SEU is the theory of decision making under ambiguity (Schmeidler,

1989). The basic idea dates back to the work of Knight (1921) on uncertainty: individuals

cannot know precisely the probabilities of all payoff-relevant events. Combining this with

the mathematical theory of capacities1 originating from Choquet (1954) resulted in Choquet

Expected Utility (CEU) theory. This theory postulates that individuals maximize an expected

utility where the expectation is taken using a capacity instead of a probability distribution. A

capacity can be used to describe the degree to which the individual’s beliefs are ambiguous.

The farther below unity the sum of all capacities is from unity, the more ambiguous the belief

system these capacities represent.

Founded on CEU, the ambiguity equilibrium concept of Eichberger and Kelsey (2000)

targets the analysis of games of complete information played by players who are affected by

ambiguity in their beliefs. The presence of ambiguity implies that a player is not confident

about his or her subjective probability assignment to the various states of the world that may

arise. Thus, these players maximize an expected payoff based on a capacity rather than on a

probability distribution to represent the probabilistic evaluation of the actions of others made

by each player. Recently, a particular variation of the ambiguity equilibrium concept—based

on so-called neo-additive capacities—has been developed in Eichberger and Kelsey (2006),

Chateauneuf, Eichberger, and Grant (2007), Eichberger, Kelsey, and Schipper (2007), and

Eichberger and Kelsey (2007). Ambiguity equilibrium under neo-additive capacities is ar-

guably the proper solution concept to apply to the problem of common resource usage.

Chateauneuf, Eichberger, and Grant (2007) showed that for neo-additive capacities, the

ambiguity equilibrium concept obtains a very tractable and intuitive formulation. Players

simply weigh three terms in their payoff functions. The first term represents their most opti-

mistic assessment of what the others will play, the second the most pessimistic assessment of

what the others will play, and the third their standard expected utility payoff. The weight with

which the first term is considered is called the “degree of optimism”, and the weight of the

second term the “degree of pessimism”. This formulation calls upon the implementation of a

1Capacities are probabilities that can sum up to less than unity.
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“neo-additive” payoff function.

We consider two implementations of the neo-additive reformulation of the commons game

using the standard ambiguity formulation introduced by Chateauneuf, Eichberger, and Grant

(2007). Using this standard implementation in the commons game, optimistic—respectively

pessimistic—attitudes are formulated through the global maximum payoff—respectively the

global minimum payoff. In this regard, both attitudes reflect maximal antagonism among the

participants in the commons game. We investigate two possible cases.

First, if both players have the same degrees of optimism and pessimism, social opinion

formation can, in principle, guide the equilibrium outcome to a Pareto optimal state. This

requires finding a delicate balance between optimism and pessimism. If these degrees of opti-

mism and pessimism deviate from this equilibrium, suboptimal extraction from the commons

results.

Second, if the players are so asymmetric that one is optimistic and the other pessimistic,

then there is always overuse of the commons; any increase in optimism moves the equilib-

rium further away from the Pareto optimal state, and any increase in pessimism moves the

equilibrium closer to it.

We believe that the standard formulation of Chateauneuf, Eichberger, and Grant (2007) does

not completely capture the current state of affairs in the global economy regarding the pol-

lution abatement situation. Rather, countries as the main decision makers are structurally

positioned in the extraction from the global commons. One can clearly distinguish “lead-

ers” from “followers”. This informs our investigation how structural or positional causes for

ambiguity affect decision making of the players in our simple commons game.

Thus, we consider a modified implementation of players’ attitudes that reflect ambiguity

about the structural positions of the different players in the decision-making processes. In

particular, optimism corresponds to the player’s belief that she has a position of leadership as

a first mover in the game. Similarly, pessimism now reflects a player’s belief that he has a

follower role. As such, this case corresponds to a more practical attitude towards pessimism

and optimism in the context of the commons game.

We emphasize that these optimistic and pessimistic beliefs are (implicitly) based upon

social opinion formation, which in turn is founded on the standard Stackelberg model of lead-

ership in duopolistic market games.2 Our main insight is that under such a leader-follower

formulation of ambiguity there results greater overuse of the commons relative to the Pareto

2We use here the fact that the tragedy of the commons has fully the same functionality as a standard duopolis-
tic market.
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efficient level, as compared to the standard ambiguity equilibrium. Moreover, increased op-

timism of a player’s leadership role increases the usage of the commons. Finally, a higher

degree of pessimism about a player’s follower role results unambiguously in lower levels of

inefficiency through the decrease of the overuse of the commons. Our main conclusion is that

leadership positions have a harmful effect on the pollution abatement process and that lower

levels of ambiguity about such leadership positions improve the efficient use of common pool

resources.

It is this last result that points to the potential value of this game theoretic analysis of

the commons game. It shows that if public opinion formation results in the leadership-based

concept of the most selfish move of the stronger player, then the commons is overused even

more. Furthermore, the more pessimistic the weaker player is, the less the commons is used.

In the context of our results, it would appear that developing countries have been acting

as followers over a long stretch of history, but have relatively recently switched their attitude

to a more extreme, and optimistic, one, closer to the behavior of the players in the standard

ambiguity equilibrium. The results from our analysis then would be broadly in agreement

with the outcomes we have observed in terms of atmospheric pollution over the past several

decades.

The remainder of this paper is organized as follows. Section 2 introduces the game theoretic

tools and equilibrium concepts. We consider the tragedy of the commons game and deter-

mine its equilibria for the various implementations of ambiguity. In Section 3 we derive the

equilibria of the commons game under structural ambiguity. Section 4 concludes.
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2 Ambiguity and the use of common resources

We consider non-cooperative games in normal form with two players, denoted by 1, 2 or

generically by i and −i. For each player i we denote by S i player i’s strategy set and define

S = S 1 × S 2 as the resulting set of strategy tuples. Finally, for each player i we introduce

a payoff function πi : S → R. The game can now be represented as a pair (S , π), where

π = (π1, π2) : S → R2.

Considering decision-making processes related to the use of common resources, it is nat-

ural to take into account how the players perceive the actions of each other.3 This refers to

the ambiguity in each player’s mind about how other players might come to decisions. This

ambiguity can be captured by an appropriately constructed equilibrium notion, the ambigu-

ity equilibrium concept. In this section we follow Eichberger, Kelsey, and Schipper (2007),

who build upon Eichberger and Kelsey (2000). We introduce ambiguity through four ele-

ments for each player i who participates in a game. For player i this concerns the quadruplet

(Mi, λi; mi, γi) representing the following elements.

Optimistic beliefs. Each player i formulates well-defined optimistic expectations with regard

to her payoffs in the game. These expectations describe the best that can occur in the

game concerning this player. The optimistic payoff function of player i is the function

Mi : S i → R assigning to every strategy xi ∈ S i of player i its maximally expected

payoff Mi(xi) ∈ R defined by

Mi(xi) = max
x−i∈S −i

πi(xi, x−i).

The number λi ∈ [0, 1] represents the weight that player i puts on her optimistic beliefs,

in other words, the degree of optimism of player i. If λi = 0, player i has no expectation

that she will receive maximal payoffs in the game, while λi = 1 refers to the other

extreme case that player i is fully convinced that she will only receive maximal payoffs.

Pessimistic beliefs. Similarly, each player i formulates pessimistic expectations with regard

to her payoffs in the game. These expectations describe the worst that this player can

imagine happening to her in the game. The pessimistic payoff function of player i is

the function mi : S i → R assigning to every strategy xi ∈ S i of player i the minimally

3We remark here that the main application of our model is the abatement of pollution in the global economy.
Players stand for countries that pollute the global environment through their productive activities.
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expected payoff mi(xi) ∈ R defined by

mi(xi) = min
x−i∈S −i

πi(xi, x−i).

The number γi ∈ [0, 1] represents the weight that player i puts on her pessimistic beliefs,

in other words, player i’s degree of pessimism. If γi = 0, player i has no expectation that

she will receive minimal payoffs in the game, while γi = 1 refers to the other extreme

case that player i is fully convinced that she will only receive minimal payoffs.

The belief-system (λi,Mi; γi,mi)i=1,2 is proper if for every player i it holds that λi + γi 6 1,

where λi +γi is the degree of ambiguity of player i. This allows us to introduce the equilibrium

concept that underlies the rest of our analysis:

Definition 2.1 A strategy tuple x? ∈ S is an ambiguity equilibrium in the game (S , π) for the

proper belief system (λi,Mi; γi,mi)i=1,2 if x? is a Nash equilibrium in the modified game (S , π),

where πi : S → R for each player i is a modified payoff function given by

πi(xi, x−i) = λiMi(xi) + γimi(xi) + (1 − γi − λi)πi(xi, x−i). (1)

If the degree of ambiguity is zero, the modified payoff formulation (1) reduces to the standard

payoff function. Chateauneuf, Eichberger, and Grant (2007) provide an axiomatic foundation

for the equilibrium under ambiguity that underlies the ambiguity equilibrium we use here.4

2.1 A commons game

Our goal is to prepare the ground for an application of the ambiguity equilibrium concept,

rather than to refine its theory, and to introduce a formalization of the effects of social opinions

on the outcome of the interaction between nations in the global community. We explore this

in a model that is sufficiently simple and compelling as to have a hope of practical application

in the field of environmental economics, and, more generally, in public economics.

4As pointed out in the papers by Eichberger and Kelsey, the modified payoff function (1) is in fact the Choquet
integral (Choquet, 1954) of the payoff function for a neo-additive capacity based on the ambiguity represented
in the belief system (λi,Mi; γi,mi)i=1,2. Proposition 3.1 in Eichberger, Kelsey, and Schipper (2007) states that for
every pure strategy Nash equilibrium of the modified game there is a pure strategy equilibrium under ambiguity
in which each player i has degree of optimism λi and of pessimism γi. Eichberger, Kelsey, and Schipper (2007),
Eichberger and Kelsey (2000), Eichberger and Kelsey (2006) are good introductions to the theory of equilibrium
under ambiguity. We also note here that the definition of equilibrium under ambiguity for more than two players
is more subtle than a direct extension of the one just given. We refer to Eichberger and Kelsey (2000) for a
discussion of the subtleties involved. We only consider two-player games in this paper and leave extensions to
more players for future work.
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We interpret the players to explicitly stand in for certain nations. Moreover, we explicitly

assume that within these nations there is a public debate about policy goals regarding the

strategic extraction of the common pool resources introduced through this game.

We employ the ambiguity equilibrium concept to flesh out asymmetry in the degrees of

(national) optimism and pessimism. The asymmetry is intended to capture in our simple

model differing world views, such as a very optimistic view of the effects of global warming,

as generally seen in past behavior of the US in international negotiations, and a pessimistic

view as seen almost everywhere else. Admittedly, this may appear to be an oversimplification,

but the study of international responses to environmental change deals with such complex

issues we feel a simple approach is best, as long as it captures a relevant aspect of the game-

theoretic interaction. The emphasis we place on simplicity in modelling is shared by some

prominent environmental economists—see, for instance, Barrett (2003).

We investigate a version of the tragedy of the commons, adapted from Falk, Fehr, and

Fischbacher (2001).5 The commons game is formally represented as a two-player normal

form game Γ = (X2, π), where X = [0, a], a > 0, is each player’s action set and πi : X2 → R

is player i’s (i = 1, 2) payoff function. Each player i ∈ {1, 2} selects an activity level xi ∈ X =

[0, a]. The payoff of each player i is given by

πi(xi, x−i) = axi − xi(xi + x−i). (2)

The parameter a > 0 describes the maximal extraction from the commons. This upper bound

a is exactly the value which results in a zero payoff even if the other player is inactive. The

lower bound is that of inactivity.6

The Nash equilibrium activity levels x∗1, x
∗
2 can be computed as

x∗1 = x∗2 =
a
3

= x∗. (3)

The resulting Nash equilibrium payoff level for each player is

π∗1 = π∗2 =
a2

9
. (4)

The socially optimal state is described as the maximizers of the sum of payoffs. For reference,

5This version of the commons game is quadratic. Ulph (2004) and related work apply a linear formulation of
this game. The quadratic version seems more appropriate to reflect a true common resources situation in which
extraction more directly affects the benefits of the other players.

6The original formulation in Falk, Fehr, and Fischbacher (2001) uses a second parameter b > 0 with πi(x) =

axi − bxi
∑n

j=1 x j. We have rescaled units by selecting b = 1.
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the socially optimal activity level of each player is determined as

x̂1 = x̂2 =
a
4

= x̂, (5)

which results in the optimal payoffs

π̂1 = π̂2 =
a2

8
. (6)

We use the standard Nash equilibrium and the social optimum as benchmarks in our discussion

of various alternative equilibrium concepts.

2.2 Ambiguity equilibrium

We consider the standard ambiguity equilibrium concept for the commons game formulated

in the previous section founded on neo-additive capacities expressing such ambiguity. It is

easy to compute that the optimistic payoff functions are given by

Mi(xi) = πi(xi, 0) = axi − x2
i . (7)

and that the pessimistic payoff functions are

mi(xi) = πi(xi, a) = −x2
i . (8)

We consider ambiguity equilibria for two different sets of degrees of optimism and pessimism:

the case of symmetric degrees, i.e., λ1 = λ2 = λ and γ1 = γ2 = γ, and the antipodal case in

which one player is optimistic and the other player is pessimistic.

Symmetric ambiguity

Following the formal definitions in the previous section, the symmetric ambiguity equilibria

can now be formulated as the Nash equilibria for the modified commons game Γs(λ, γ) with

payoff functions given by

Ui(xi, x−i) = λMi(xi) + γmi(xi) + (1 − λ − γ)πi(xi, x−i)

= λ
(
axi − x2

i

)
+ γ

(
−x2

i

)
+ (1 − λ − γ) [axi − xi(xi + x−i)]

= (1 − γ)axi − x2
i − (1 − λ − γ)xix−i. (9)
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Figure 1: Representative percentage payoff losses in the symmetric case for a = 1.

We compute from (9) for i = 1, 2 that each player’s first order condition for the symmetric

ambiguity equilibrium is given by

∂Ui

∂xi
(xi, x−i) = (1 − γ)a − 2xi − (1 − λ − γ)x−i = 0.

This results in a unique equilibrium under symmetric ambiguity given by

xs
i =

(1 + λ + γ)(1 − γ)a
4 − (1 − λ − γ)2 , i = 1, 2. (10)

The resulting payoffs for this equilibrium under symmetric ambiguity is thus derived as

U s
i = a2(1 + λ + γ)(1 − γ)

1 − λ2 + γ2 + 2γ
[4 − (1 − λ − γ)2]2 . (11)

A numerical analysis of these equilibrium payoffs in comparison with the socially optimal

payoff level results in the graphs depicted in Figure 1. This representation depicts the differ-

ence of the Pareto optimal and the equilibrium payoffs as a percentage of the Pareto optimal

payoff level.

We note that the efficiency losses from symmetric ambiguity can be significant. However,

the analysis also shows that for every degree of optimism there corresponds a certain degree

of pessimism such that the resulting equilibrium is fully optimal. This implies that under
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symmetric ambiguity, public discussion can, in principle, guide us to an efficient state. In any

case the efficiency losses can, at least, be limited by the appropriate guidance through social

opinion formation.

Our analysis can be summarized as follows:

Theorem 2.2 Under symmetric ambiguity, the following statements hold:

(i) For every degree of optimism 0 6 λ 6 1
2 there exists a unique degree of pessimism

γ∗(λ) such that λ+γ∗(λ) 6 1 and the corresponding symmetric ambiguity equilibrium

results in a Pareto optimal extraction from the commons, that is, xs = x̂.

(ii) For every degree of pessimism 0 6 γ < 1
2 there exists a threshold value λγ of the

degree of optimism such that

(a) above that threshold value λγ an increase in the degree of optimism λ > λγ re-

sults in an increased overuse of the commons in the corresponding symmetric

ambiguity equilibrium, and

(b) below that threshold value λγ a decrease in the degree of optimism λ < λγ

results in an increased underuse of the commons in the corresponding sym-

metric ambiguity equilibrium.

In the context of the statements in the theorem, we point out the various limit cases of complete

or “unbridled” optimism and pessimism. First, under unbridled optimism represented by

λ = 1 and γ = 0, social opinion formation results in an equilibrium with

xs
i = a

2 and U s
i = 0.

On the other hand, unbridled pessimism is represented by λ = 0 and γ = 1 resulting in an

equilibrium with

xs
i = 0 and U s

i = 0.

This case is equally disastrous; both unbridled social optimism and pessimism leads to com-

plete depletion of payoffs.

The modelling of a player who is simultaneously optimistic and pessimistic in a game

with a one-dimensional strategy set, such as the game we consider here, may be considered

far-fetched. How can the player be optimistic and pessimistic at the same time? If the set

over which the ambiguity is defined is multi-dimensional, we could imagine that the player
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is optimistic over some dimensions and pessimistic over others; this is allowed under the

Choquet integral formulation of beliefs under ambiguity. In this paper, the set over which

ambiguity applies is one-dimensional. Intuitively, the results of this section are easier to

consider when we allow only λ or only γ to differ from zero. In the analysis presented in the

next subsection we only allow such situations.

Antipodal ambiguity

Under antipodal ambiguity we assume that one player is optimistic and the other player is

pessimistic, although we keep the possibility of having various degrees of optimism and pes-

simism. Without loss of generality we suppose that player 1 is the optimist and player 2 is the

pessimist. This case corresponds to the hypothesis that λ1 = λ > 0 and γ1 = 0, while λ2 = 0

and γ2 = γ > 0. This results in an antipodal ambiguity equilibrium being a Nash equilibrium

of the modified commons game Γa(λ, γ) with payoff functions given by

V1(x1, x2) = λM1(x1) + (1 − λ)π1(x1, x2)

= λ(ax1 − x2
1) + (1 − λ)(ax1 − x1(x1 + x2))

= ax1 − x2
1 − (1 − λ)x1x2, (12)

and

V2(x1, x2) = γm2(x2) + (1 − γ)π2(x1, x2)

= γ(−x2
2) + (1 − γ)(ax2 − x2(x1 + x2))

= (1 − γ)(ax2 − x1x2) − x2
2. (13)

We can now easily compute the first order conditions for equilibrium:

∂V1

∂x1
= a − 2x1 − (1 − λ)x2 = 0,

∂V2

∂x2
= (1 − γ)(a − x1) − 2x2 = 0.

This results in a unique antipodal ambiguity equilibrium given by

xa
1 =

1 + λ + γ − λγ

4 − (1 − λ)(1 − γ)
a, (14)

xa
2 =

1 − γ
4 − (1 − λ)(1 − γ)

a. (15)
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Tedious computation confirms that the optimistic player 1’s activity level is more than the

efficient level of a/4, while the pessimistic player 2’s activity level is less if γ is large enough.

However, the sum xa
1 + xa

2 is unambiguously more than the efficient level of a/2, so we have

overuse of the commons.

The comparative statics now are clear-cut. We find the following.

∂xa
1

∂λ
=

2a(1 − γ)
[4 − (1 − λ)(1 − γ)]2 > 0. (16)

The interpretation of this result is that as the optimistically biased player becomes more opti-

mistic, her activity level increases. This is consistent with the general insight from the litera-

ture that optimism leads away from efficient choices in situations of the provision of a public

good, although we do not know of any previous analysis that has shown this in an asymmetric

model like ours.

Similarly, we derive that

∂xa
2

∂λ
= −a

(1 − γ)2

[4 − (1 − λ)(1 − γ)]2 < 0. (17)

This implies that the pessimistically biased player reacts to the increase in optimism of the

other player by reducing its harmful activity.

We can also see what the overall effect on the activity will be by a change in λ. This is

simply the sum of the two partial derivatives we have just calculated, and it equals

∂xa
1

∂λ
+
∂xa

2

∂λ
= a

(1 − γ)[2 − (1 − γ)]
[4 − (1 − λ)(1 − γ)]2 > 0. (18)

We see that the increase in the optimist’s activity level clearly over-compensates the decrease

of the pessimist’s activity.

We also look at the effect of an increase in the degree of pessimism γ of the pessimistically

biased player. We derive that

∂xa
1

∂γ
=

2a(1 − λ)
[4 − (1 − λ)(1 − γ)]2 > 0. (19)

Hence, if the pessimist becomes more so, the optimist takes advantage by increasing its own

activity level. The effect on the pessimist’s own activity level is

∂xa
2

∂γ
= −a

4
[4 − (1 − λ)(1 − γ)]2 < 0. (20)
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We see that the pessimist reduces activity level drastically in response to an increase in its

pessimism. In fact, it is also true that the total activity level is reduced:

∂xa
1

∂γ
+
∂xa

2

∂γ
= a

2(1 − λ) − 4
[4 − (1 − λ)(1 − γ)]2 < 0. (21)

We summarize our results in this subsection in the following.

Theorem 2.3 Consider the tragedy of the commons under antipodal ambiguity with one op-

timistically biased player, the “optimist”, and one pessimistically biased player, the “pes-

simist”. Then the following statements hold:

(i) There is always overuse in the resulting antipodal ambiguity equilibrium.

(ii) An increase in the degree of optimism of the optimistic player increases that player’s

activity level, reduces the pessimist’s activity level, and increases the sum of their

activity levels.

(iii) Finally, an increase in the pessimist’s degree of pessimism increases the optimist’s

activity level, decreases the pessimist’s activity level, and decreases the sum of their

activity levels.
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3 Structural Ambiguity

In this section we inject a more nuanced implementation of optimism and pessimism into the

reasoning of the decision makers about each other. Inspired by the ambiguity equilibrium

formulation, we impose modified payoff functions for the two decision makers that reflect

their respective view on their structural position in the pollution abatement negotiations. This

form of ambiguity, thus, concerns whether a player has a leadership position or a following

position within the global pollution situation. We first debate the foundations for this form of

ambiguity and subsequently develop a formal model to express these concerns.

Leadership and Social Opinion Formation

We imagine the players as influenced by public perceptions within their countries as to their

relative strength in the underlying global commons game. We intentionally allow only one

aspect of these extractions from the commons into our enhanced model; namely the structural

ambiguity regarding their leadership or follower position in the global community that affects

the various nations.

Given the contemporary global political situation it is natural to assume that certain coun-

tries have a rather different perception of the global commons problem than others. Here we

simplify this by contrasting large, influential economies from developing, minor economies.

Large, developed economies are in a position of leadership, while minor economies are in a

position of following the announcements of these leaders. In the simple two-player commons

game we now assume that up to a certain degree player 1 is a potential leader, while player 2

is a potential follower in the negotiations about the use of the commons. Consequentially, the

leader is assumed to be optimistic in her perception of the game, while the follower is pes-

simistic in that regard. This is in particular founded on the perception that leadership implies

some form of control of the decision-making processes.

Thus, the ambiguity of the players about their respective actions and choices in this game

is replaced by ambiguity about their structural positions in the game. Player 1 is optimistic

about having a leadership position, while player 2 is pessimistic that it is positioned as a fol-

lower in the social structure of the decision-making processes about the use of the commons.

We assume that both players still have different degrees of optimism (player 1) and pessimism

(player 2) about their structural position. Hence, these two degrees still feature as parameters

in our model. What is different from the preceding section is that the ambiguity regards being

a leader or a follower and that this ambiguity comes from general perceptions in background

populations of agents. We refrain from offering a detailed model of the transmission of opti-
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mistic and pessimistic opinions within large populations of agents for the same reason we do

not model an explicit negotiation dynamic.

A formal model

To model the structural positions of the two players in the simple 2-player variation of the

standard commons game, we invoke the Stackelberg leadership model of a sequential deter-

mination of the strategic values of xi, i = 1, 2. Subsequently, informed by the ambiguity

equilibrium concept, we introduce two ad hoc formulations of the leader’s and follower’s

payoff functions. The leader’s payoff is founded on the Stackelberg hypothesis that the fol-

lower always plays a best response, while the leader takes this response in full account.7 The

leader’s degree of optimism λ > 0 is now simply her confidence that she actually will be in

such a leadership position. In this regard, λ is player 1’s leadership degree.

The first step in our analysis is to determine the basic Stackelberg responses. Here, the

follower’s best response function derived from π is now computed as

β(x1) = 1
2 (a − x1).

In the straightforward Stackelberg-leadership situation, the leader now maximizes her modi-

fied payoff function given by

π1(x1, β(x1)) = ax1 − x1(x1 + β(x1)) = a
2 x1 −

1
2 x2

1.

This results in an optimum usage level for the leader of

σ = arg max
x1>0

π1(x1, β(x1)) = a
2 .

This allows us to formulate the corresponding payoff functions for the leader-follower struc-

ture as follows:

W1(x1, x2) = λπ1(x1, β(x1)) + (1 − λ)π1(x1, x2). (22)

Thus, player 1—as a large economy—expects to be in a leadership position to a certain extend

quantified through the degree 0 < λ 6 1. In line with our previous discussion, λ can be

interpreted as the leadership degree for player 1.

7This is a consequence of the sequential structure of the decision making processes modelled through the
subgame perfection of the equilibrium concept.
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We note that it is also possible to interpret σ as the most selfish action that the optimistic

player can take. In the previous section, this most extremely selfish action was the extreme

one of appropriating the whole commons based on the ambiguity concept introduced in Eich-

berger, Kelsey, and Schipper (2007). Instead of this, here the beliefs of both players about the

extremism of the most powerful player are moderated and we have chosen to moderate them

by following the Stackelberg leader-follower analysis. Other ways to do this are certainly

possible and might interface well with models of social belief formation. While this topic is

interesting, it is beyond the scope of this paper.

Returning to the specification of payoffs, player 2—as the minor economy—expects to be

in the position of a follower in relation to player 1 to an extent quantified by 0 < γ 6 1. Here

γ can be denoted as player 2’s follower degree. This results in the modified payoff function

given by

W2(x1, x2) = γπ2(σ, x2) + (1 − γ)π2(x1, x2). (23)

From the above we now compute that

W1(x1, x2) =
(
1 − λ

2

) (
ax1 − x2

1

)
− (1 − λ)x1x2, (24)

W2(x1, x2) =
(
1 − γ

2

)
ax2 − x2

2 − (1 − γ)x1x2. (25)

We now introduce the notion of a Leadership Equilibrium as a Nash equilibrium of the

modified commons game Γ`(λ, γ), where the payoff functions of the two players are given by

W1, respectively W2.

For the given parameters we derive the first order conditions necessary for this Leadership

Equilibrium:

∂W1

∂x1
=

(
1 − λ

2

)
(a − 2x1) − (1 − λ)x2 = 0,

∂W2

∂x2
=

(
1 − γ

2

)
a − 2x2 − (1 − γ)x1 = 0.

The Leadership Equilibrium is thus fully specified as

x`1 =
2 + γ(1 − λ)

6 − 2λ + 2γ(1 − λ)
a, (26)

x`2 =
2 − λ

6 − 2λ + 2γ(1 − λ)
a. (27)
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It can be verified by tedious computation that x`1 exceeds the optimal activity level of a/4,

while x`2 is less than a/4; the total activity x`1 + x`2 is more than the efficient level of a/2, so

Leader-Follower social opinions lead to underuse of the commons in the aggregate.

Turning to comparative statics, when the leadership degree changes, we find that for all

degree levels λ and γ,

∂x`1
∂λ

=
a

2[3 − λ + γ(1 − λ)]2 > 0, (28)

and that for γ < 1

∂x`2
∂λ

=
a(γ − 1)

2[3 − λ + γ(1 − λ)]2 < 0. (29)

The sum of these is positive for all λ and γ:

∂x`1
∂λ

+
∂x`2
∂λ

=
a(1 + γ)

2[3 − λ + γ(1 − λ)]2 > 0. (30)

When the degree of pessimism of the pessimist changes, we find that if λ < 1,

∂x`1
∂γ

=
a(1 − λ)(1 + λγ − λ)
2[3 − λ + γ(1 − λ)]2 > 0, (31)

and

∂x`2
∂γ

=
a(2 − λ)(λ − 1)

2[3 − λ + γ(1 − λ)]2 < 0. (32)

The sum of these is negative:

∂x`1
∂γ

+
∂x`2
∂γ

=
a(1 − λ)(λγ − 1)

2[3 − λ + γ(1 − λ)]2 < 0. (33)

Our results are summarized below.

Theorem 3.1 Let 0 < λ, γ < 1. In the Leadership Equilibrium applied to the given commons

game, we have the following properties:

(i) In the resulting Leadership Equilibrium there is overuse of the commons.

(ii) Furthermore, an increase in the leadership degree of the larger player increases that

player’s activity level, reduces the smaller player’s activity level, and increases the
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sum of their activity levels.

(iii) Finally, an increase in the follower degree of the smaller player increases the larger

player’s activity level, decreases the smaller player’s activity level, and decreases the

sum of their activity levels.

We emphasize that the main conclusion from the theorem stated is that leadership ambiguity

has negative effects on the extraction of the commons. First, there is always overuse of the

common pool resource under leadership ambiguity. Second, the more confident a negotiator

is about her leadership position, the farther away from optimality the extraction from the

common pool resource that results.
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4 Some comparisons

In the setting of our simple commons game we have considered three equilibrium concepts

that are based on ambiguity considerations. In this section we discuss how these equilibrium

concepts compare with regard to total extractions from the common resource. We show that

there is no clear unambiguous ranking of these forms of ambiguity in terms of efficiency.

First, we compare the symmetric ambiguity equilibrium with the antipodal ambiguity

equilibrium. Comparisons between the derived equilibria lead us to the conclusion that there

are degree values for which the antipodal case is Pareto superior to the symmetric case and

vice versa. The following statement makes that more precise.

Theorem 4.1 Let 0 6 λ, γ 6 1 be two given degrees of optimism and pessimism. Consider

the symmetric ambiguity equilibrium xs in Γs(λ, γ) and the antipodal ambiguity equilibrium

xa in the context of γa(λ, γ). Then the following statements hold:

(i) If γ < 0.56λ − 0.01, then xs
1 + xs

2 > xa
1 + xa

2, i.e., the commons extraction under sym-

metric ambiguity is larger than the commons extraction under antipodal ambiguity.

(ii) If γ > 0.56λ+0.01, then xs
1+xs

2 < xa
1+xa

2, i.e., the commons extraction under antipodal

ambiguity is larger than the commons extraction under symmetric ambiguity.

The proof of Theorem 4.1 is illustrated in Figure 2.

Next we consider the leadership equilibrium concept in comparison with the symmetric

ambiguity equilibrium. Again we compare the total extraction from the commons under these

two different regimes. Computations show that two situations emerge:

Theorem 4.2 Let 0 6 λ, γ 6 1 be two given degrees of optimism and pessimism. Consider

the symmetric ambiguity equilibrium xs in Γs(λ, γ) and the leadership equilibrium x` in the

context of γ`(λ, γ). Then the following statements hold:

(i) If γ < 0.4λ − 0.01, then xs
1 + xs

2 > x`1 + x`2, i.e., the commons extraction under sym-

metric ambiguity is strictly larger than the commons extraction under the leadership

equilibrium.

(ii) If γ > 0.4λ+ 0.01, then xs
1 + xs

2 < x`1 + x`2, i.e., the commons extraction under symmet-

ric ambiguity is strictly smaller than the commons extraction under the leadership

equilibrium.
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Theorem 4.1 illustration. Nonnegative lines shown solid.

Figure 2: Illustration of Theorem 4.1. Several level sets of xa
1 + xa

2 − xs
1 − xs

2 are shown.
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Figure 3: Illustration of Theorem 4.2. Several level sets of xs
1 + xs

2 − x`1 − x`2 are shown.

21



0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

γ

-9.000

-7.500

-6.000

-4.500

-3.000

-1.500

0.000

Theorem 4.3 illustration. Nonnegative levels shown solid.

Figure 4: Illustration of Theorem 4.3. Several level sets of xa
1 + xa

2 − x`1 − x`2 are shown.

The proof of Theorem 4.2 is illustrated in Figure 3.

The comparison of the leadership equilibrium and the case of antipodal ambiguity is less

straightforward. Again there are different sets of degree values for which opposite compar-

isons hold. For example, for γ = 0 and λ = 1
2 we have that the total extraction of the commons

under antipodal ambiguity is larger than the total extraction under the leadership equilibrium,

representing structural ambiguity.

On the other hand, for most degree values the opposite holds as is stated in the following

assertion:

Theorem 4.3 Let 0 6 λ, γ 6 1 be two given degrees of optimism and pessimism. Consider

the antipodal ambiguity equilibrium xa in Γa(λ, γ) and the leadership equilibrium x` in the

context of γ`(λ, γ).

If γ > 0.075, it holds that xa
1 + xa

2 < x`1 + x`2, i.e., the commons extraction under antipodal

ambiguity is strictly smaller than the commons extraction under the leadership equilibrium.

Finally, the proof of Theorem 4.3 is illustrated in Figure 4.

In other words, if the degree of pessimism under antipodal ambiguity and the follower

degree for the case of structural ambiguity is sufficiently large, structural ambiguity results

into higher total extraction from the commons than for the case of antipodal ambiguity.
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Coda

We have considered a standard game-theoretic model of the tragedy of the commons to il-

lustrate the global environmental situation. We solved the model by means of ambiguity

equilibrium and a modification of ambiguity equilibrium intended to open the possibility of

capturing in the model socially determined optimistic and pessimistic attitudes of the players

based on leadership considerations. While very simple, the model yields intriguing results that

appear to capture the general outlines of the behavior of developed and developing countries

over the past several decades.

Even more intriguing are the new questions that arise from the viewpoint we have adopted

regarding the extension of ambiguity equilibrium to include social determination of the com-

ponents of the model; that is, (i) of the most selfish action a player can be considered to take,

and (ii) of the player’s degree of optimism and pessimism. To do this, we have departed

from the original ambiguity equilibrium concept and therefore cannot point to its axiomatic

foundation for conceptual support. However, we believe there is an intuitive appeal to our

analytical departure. As for the new questions it creates, we find these the most interesting:

(i) to formulate a laboratory experiment to test the performance of our extension of ambiguity

equilibrium, (ii) to embed our extension into an explicit model of social belief formation, and

(iii) to model an enriched dynamic model of negotiations. We consider these questions very

promising for future research on this important subject.
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