The effects of genetic liability for schizophrenia and maternal smoking during pregnancy on obstetric complications

Lauren M. Ellman, Matti Huttunen, Jouko Lönnqvist, Tyrone D. Cannon

Abstract

The purpose of this study was to determine whether a genetic vulnerability for schizophrenia and/or health-risk behaviors among schizophrenic pregnant women were associated with an increased incidence of obstetric complications (OCs).

Method: A high-risk birth cohort was formed by searching the Finnish Perinatal Register for all births from 1991–2000 with arterial cord pH values below 7.20, an indication of fetal asphyxia. This database was merged with national hospital discharge registries to determine psychiatric morbidity of the mothers and the mothers’ first-degree relatives. Mothers were divided into 3 groups: women diagnosed with schizophrenia/schizoaffective disorder (n=53), mothers with a first-degree relative with schizophrenia/schizoaffective disorder (n=590) and healthy controls (n=36,895).

Result: Schizophrenic women had significantly more OCs than mothers with a first-degree schizophrenic relative and controls. Offspring of schizophrenic mothers had significantly decreased APGAR scores and birth weight and increased medical complications after birth. In contrast, women with a schizophrenic first-degree relative had no significant increases in OCs compared to controls. Schizophrenic mothers also smoked more than the other groups and smoking was found to mediate the relationship between maternal schizophrenic status and decreased birth weight among offspring.

Conclusions: Maternal schizophrenia during pregnancy leads to an increased risk of OCs, possibly due to engagement in health-risk behaviors during pregnancy, such as smoking, whereas genetic susceptibility to schizophrenia, by itself, does not appear to be related to incidence of OCs.

Keywords: Schizophrenia; Pregnancy; Obstetric complications; Gene-environment covariation; Behavioral genetics; Health-risk behaviors

1. Introduction

Schizophrenia is a debilitating brain disorder typically with onset in late adolescence/early adulthood (DSM-IV-TR, 2000). Although genetic factors play a substantial role in the etiology of the disorder, with heritability estimates approximating 83% (Cannon et al.,...
environmental factors must also play a role. Among the environmental contributors, obstetric complications (OCs) have consistently been associated with schizophrenia (Brown and Susser, 2002; Cannon and Clarke, 2005; Cannon, 1997). Obstetric complications have been defined as the broad class of deviations from a normal course of events and offspring development during pregnancy, labor-delivery, and the early neonatal period (McNeil, 1988). OCs occur at a relatively high frequency, with approximately 20–30% of schizophrenic patients and 5–10% of the overall population having a history of certain OCs, such as those associated with oxygen deprivation (Buka et al., 1993; Cannon, 1997; McNeil, 1988). A question of major importance is whether the effects of OCs depend on (Cannon et al., 1990), covary with (Fish et al., 1992), or are independent of (Lewis and Murray, 1987; Torrey and Yolken, 1995) genetic influences in the etiology of schizophrenia. Determining the correct model is critical for efforts to locate predisposing genes and could have significant implications for prevention efforts.

It is particularly critical to determine whether the genes for schizophrenia themselves increase the incidence of OCs, as in the gene-environment covariation model. If this is the case, it would not be clear whether the obstetric influences exert an etiologic effect that is independent of genetic influences, or vice versa. The gene-environment covariation model predicts a relative increase in the number of OCs in individuals carrying the genes for the disorder, regardless of whether they express the illness phenotypically. Support for this model comes from studies that found increased birth complications among schizophrenic mothers (McNeil, 1991; Wrede et al., 1980), but is inconsistent with one study that found no increases in maternal recall of OCs among unaffected siblings of schizophrenic patients (Walshe et al., 2005). Studies that rely on maternal recall of OCs are subject to bias; therefore, it is still unclear whether individuals at high genetic liability for the disorder exhibit increases in OCs (Buka et al., 2000; McIntosh et al., 2002).

Although increased OCs in the offspring of schizophrenic mothers supports the gene-environment covariation model, findings suggest that there is greater occurrence of health-risk behaviors during pregnancy among these women, including being less likely to receive prenatal care, more likely to be polydrug users, more likely to drink alcohol, and more likely to smoke cigarettes compared to non-schizophrenic controls (Bennedsen, 1998). Many of these health-risk behaviors have been linked with increased incidences of certain OCs. Specifically, maternal smoking during pregnancy significantly predicts low birth weight, fetal hypoxia, premature delivery, small for gestational age infants, and infant mortality (Delpisheh et al., 2006; Kleinman et al., 1988; Raatikainen et al., 2007; Smith et al., 2006). In fact, one study found that women diagnosed with schizophrenia before the birth of their babies were at especially heightened risk for OCs and that smoking partially mediated these effects (Nilsson et al., 2002). This pattern of results raises the possibility that it is the schizophrenic mother’s engagement in health-risk behaviors, rather than her genetic loading for the disorder, that is related to increased incidence of OCs.

The purpose of this study is to determine whether an increased incidence of obstetric complications (OCs) is associated with a family history of schizophrenia and/or maternal smoking during pregnancy among schizophrenic women using prospectively collected obstetric and psychiatric information from national registries in Finland. It was predicted that there would be increased smoking and OCs among schizophrenic women compared with healthy controls and women with a 1st degree schizophrenic relative. In addition, we hypothesized that smoking during pregnancy would mediate the relationship between group status and risk for OCs related to smoking, such as decreased birth weight and premature delivery which have significant associations with smoking during pregnancy in the general population (Delpisheh et al., 2006; Raatikainen et al., 2007; Smith et al., 2006). Lastly, we predicted no significant differences between incidences of OCs among women with a family history of schizophrenia and controls. Women with a first-degree relative with schizophrenia likely have some of the disease-producing genes; therefore, if the genes for schizophrenia were associated with OCs, we would expect an increased frequency of OCs in this group compared with controls.

2. Materials and methods

The institutional review boards at the National Public Health Institute of Finland and from the University of California, Los Angeles, approved this study. To ascertain a sample with a high-risk for obstetric complications, a birth cohort was formed by searching the Finnish Perinatal Register (from the National Research and Development Centre for Welfare and Health/STAKES) for all babies born between the years of 1991 and 2000 with arterial cord pH values below 7.20 (n=38,420), which is a fair estimate of acute perinatal hypoxia (Silverman et al., 1985; Smith et al., 2004). This inclusion criterion was chosen because perinatal hypoxia has been associated with many OCs,
including the OCs included in this study (Adamson et al., 1995; Heinonen and Saarakoski, 2001; Leuthner and Das, 2004; Moore et al., 1986; Nitsos et al., 2006; Teramo et al., 2004; Unger et al., 1988; Villar et al., 2006), therefore the composition of this high-risk cohort ensured that the groups would include women with a high likelihood of OCs.

Finnish citizens have free access to psychiatric inpatient and outpatient health care. There are 3 national computerized databases that document psychiatric contacts: Hospital Discharge Register, Pension Register, and Free Medicine Register (from the National Research and Development Centre for Welfare and Health/STAKES). Approximately 90% of psychotic patients come into contact with the health care system in one of the aforementioned ways (Lehtinen et al., 1990). Records include primary diagnoses according to the International Classification of Diseases, editions 8–10 (International Classification of Diseases, 1969; International Classification of Diseases, 1977., 2003), but correspond well to DSM-III-R and IV criteria (DSM-III-R, 1987; DSM-IV, 1994). Studies suggest that the national registries have between 92–100% specificity for diagnosing schizophrenia when compared with DSM-III-R criteria (Cannon et al., 1998; Isohanni et al., 1997; Makikyro et al., 1998).

Groups were formed by searching these three registers for all women with an ICD-9 code of 295, thereby diagnosed with schizophrenia and/or schizoaffective disorder. The perinatal database then was merged with psychiatric databases and control subjects were selected based on having no psychiatric diagnoses in the psychiatric registries. Mothers were divided into 3 groups: women diagnosed with schizophrenia/schizoaffective disorder (Sz, \(n = 53 \)), mothers with a first-degree relative with schizophrenia/schizoaffective disorder (Fhx, \(n = 590 \)) and healthy controls (without psychiatric morbidity and/or a family history of psychiatric morbidity \(n = 36,895 \)). First-degree relatives were defined as mothers, fathers, and siblings. All of the psychotic women in this study were diagnosed with schizophrenia or schizoaffective disorder before the birth of their babies. Women diagnosed after the birth of their baby were excluded from the study in order to isolate women that had a greater likelihood of being symptomatic during pregnancy. Sample characteristics are displayed in Table 1.

2.1. Obstetric variables

Beginning in 1990, all births (including still births) in Finland were recorded in a computerized perinatal registry, which includes systematically acquired medical information pertaining to the pregnancies and births of individuals in the population. In Finland, approximately 90% of pregnant women attend outpatient clinics at least once a month. During these visits, a personal pregnancy data card, which includes medical information pertaining to the visit, is completed by the physician. Similarly, labor and delivery information is collected during the mother’s stay in hospital. Obstetric data included in the perinatal registry have greater than 95% agreement with medical records and are considered reliable and valid (Gissler et al., 1995; Teperi, 1993).

One minute APGAR scores, birth weight (grams), premature delivery (earlier than 37 weeks), eclampsia, prenatal hospital admission due to unknown reasons, smoking during pregnancy, neonatal treatment 7 days after birth (0 indicated no treatment and 1 indicated treatment), treatment at hospital due to high blood pressure, and bleeding during pregnancy were used in this study.

Smoking during pregnancy was defined as smoking at any time during the course of pregnancy. An APGAR score is a measure of the newborn derived at by scoring the heart rate, respiratory effort, muscle tone, skin color, and response to a catheter in the nostril (rated from 0–10, 10 indicating perfect health). Eclampsia is defined as convulsions occurring with pregnancy-associated high blood pressure.

2.2. Statistical analyses

Statistical analyses were conducted using SAS version 8.2 software (SAS, Inc., Cary, N.C.). One-way ANOVA’s determined significant differences in maternal age \((f=99.86, df=2, p<0.0001)\) and parity \((f=34.05, df=2, p<0.0001)\) among the 3 comparison groups (see Table 1); therefore maternal age and parity

Table 1

Demographic characteristics of sample by group status

<table>
<thead>
<tr>
<th>Characteristic Category</th>
<th>Schizophrenic/ schizoaffective mothers ((N=53))</th>
<th>Mothers with first-degree schizophrenia relative ((N=590))</th>
<th>No diagnosis ((N=36,895))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baby’s sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>54.72%</td>
<td>52.54%</td>
<td>53.82%</td>
</tr>
<tr>
<td>Female</td>
<td>45.28%</td>
<td>47.46%</td>
<td>46.18%</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>58.49%</td>
<td>63.70%</td>
<td>63.73%</td>
</tr>
<tr>
<td>Unmarried</td>
<td>37.54%</td>
<td>32.36%</td>
<td>34.32%</td>
</tr>
<tr>
<td>Divorced</td>
<td>0.00%</td>
<td>0.17%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Widowed</td>
<td>3.77%</td>
<td>3.77%</td>
<td>1.87%</td>
</tr>
<tr>
<td>Mother’s age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>33.87(5.71)</td>
<td>31.99(5.41)</td>
<td>29.22(5.29)</td>
</tr>
<tr>
<td>Earlier deliveries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.93(1.82)</td>
<td>1.00(1.63)</td>
<td>0.63(1.10)</td>
</tr>
</tbody>
</table>
were controlled for in all regression and logistic regression analyses. Chi-square tests and post-hoc chi-square tests were estimated to examine whether groups differed in smoking status during pregnancy. Logistic regression (for dichotomous dependent variables) and multiple regression analyses (for normally distributed continuous dependent variables) were conducted to ascertain whether group status significantly predicted OCs, net of maternal age and parity. All analyses using measures of the newborn also controlled for the baby’s gender.

To test whether smoking mediated the relationship between group status and OCs, smoking during pregnancy was added as a covariate to the above models, to determine whether inclusion of this variable eliminated the effects of group status on OCs. As described by Barron and Kenny (1986), a mediation variable changes the relationship between the antecedent and outcome variable and must be significantly associated with the antecedent and outcome variables. Specifically, for smoking to mediate the relationship between schizophrenic status and OCs: 1. Schizophrenic status must be significantly associated with the OC. 2. Schizophrenic status must be associated with smoking during pregnancy and 3. Addition of smoking during pregnancy to a model must remove the significant effect of schizophrenic status on OCs.

3. Results

Table 2 displays percentages, means, chi-squares, and ANOVA results for all obstetric variables by group status. Results indicated no significant overall differences between the 3 groups with respect to smoking ($\chi^2=4.0372, df=2, p=0.1328$), however post-hoc comparisons revealed a significant difference in smoking between Sz and controls ($\chi^2=4.0239, df=1, p=0.0449$) and a marginal difference between Sz and Fhx ($\chi^2=3.3717, df=1, p=0.0663$). The significant difference in smoking between Sz and controls meets the second condition for a mediation variable. There was no significant difference in smoking between Fhx and controls, indicating that this effect was limited to those who expressed the disorder phenotypically.

The initial models, without including smoking as a covariate, suggested that maternal schizophrenic status compared with control status was significantly associated with a multitude of prenatal complications, meeting the first condition for mediation. Specifically, schizophrenic status compared to control status was associated with a 57.05 times increase in eclampsia ($\chi^2=51.96, df=1, p<0.0001$), a 2.17 times increase in prenatal hospital treatment ($\chi^2=7.09, df=1, p=0.0077$), a 3.43 times increase in premature delivery ($\chi^2=5.55, df=1, p=0.018$), and a marginal 2.05 times increase in maternal hospital treatment for high blood pressure ($\chi^2=2.71, df=1, p=0.099$), independent of maternal age and parity (see Table 3). Similarly, maternal schizophrenic status compared to control status was significantly associated with a series of neonatal complications among offspring, including a 173.46 gram decrease in birth weight ($t=-2.17, df=1, p=0.03$), a 0.78 decrease in APGAR scores ($t=-3.39, df=1, p=0.0007$), and a 4.74 times increase in neonatal medical treatment 7 days after delivery ($\chi^2=28.32, df=1, p<0.0001$), controlling for maternal age, parity, and infant’s gender. In contrast, having a first-degree relative with schizophrenia had no significant effect on any of the obstetric variables compared to controls. Lastly, there was no effect of group status on vaginal bleeding, which may have been

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Category</th>
<th>Schizophrenic/ schizoaffective mothers (N=53)</th>
<th>Mothers with first-degree schizophrenic relative (N=590)</th>
<th>No diagnosis (N=36,895)</th>
<th>Analysis</th>
<th>F, df, p</th>
<th>χ^2, df, p</th>
</tr>
</thead>
</table>
due to the very low incidence of this OC in the overall sample (see Table 2).

To test the third condition of mediation, smoking during pregnancy was entered into each regression and logistic regression model. Results replicated the initial findings for eclampsia, prenatal hospital treatment, premature delivery, vaginal bleeding, prenatal treatment at hospital for high blood pressure, 1-minute APGAR scores, and neonatal medical treatment 7 days after delivery, indicating an absence of mediation effects of smoking on these OCs (see Table 3). However, smoking was found to mediate the relationship between schizophrenic status and birth weight, such that there was no longer a significant association between schizophrenic status and birth weight when smoking was included in the model ($t=1.28$, $df=1$, $p=2.007$) (see Table 3).

4. Discussion

This is the first study to demonstrate in a prospective design that schizophrenic women had significantly more obstetric complications than mothers with a genetic vulnerability for schizophrenia and controls. Specifically, schizophrenic mothers had more complications during pregnancy, with increased rates of eclampsia, prenatal hospitalizations, high blood pressure during pregnancy, and preterm delivery. In addition, offspring of these women had significantly more difficulties than offspring of the other two comparison groups, with decreased APGAR scores and birth weight and increased rates of neonatal medical treatments. In contrast, women with a genetic liability for schizophrenia had no significant increases in OCs compared to controls. These findings argue against the gene-environment covariation model, which predicts increases in OCs among mothers with a genetic liability for schizophrenia. Because women with a schizophrenic first-degree relative likely have some of the disease-producing genes, if the gene-environment covariation model were correct, there would be increased OCs among this group, which was not observed.

Findings also indicated that schizophrenic mothers smoked more than the other two groups and smoking mediated the relationship between schizophrenic status and decreased birth weight. This finding is especially important given that there have been conflicting results pertaining to increased incidence of low birth weight babies among schizophrenic mothers (Bennedsen, 1998; McNeil, 1991; Sacker et al., 1996). Nevertheless, smoking was not found to mediate the relationship between schizophrenic status and premature delivery. One possibility is that the mediational effects of smoking on gestational length were obscured by using a dichotomous variable (term/preterm) versus a continuous estimation of gestational length, which were not

Table 3

Effects of group status on OCs: results from regression and logistic regression analyses

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Model 1: Sz vs. controls</th>
<th>Model 2: adding smoking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameter estimate</td>
<td>95% CI</td>
</tr>
<tr>
<td>Birth weight</td>
<td>-173.47^*</td>
<td>$-330.51, -16.43$</td>
</tr>
<tr>
<td></td>
<td>-0.78^{***}</td>
<td>$-1.23, -0.33$</td>
</tr>
<tr>
<td>1-minute APGAR</td>
<td>Odds ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>Premature delivery</td>
<td>3.43*</td>
<td>1.23, 9.57</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>57.05^{***}</td>
<td>11.94, 272.58</td>
</tr>
<tr>
<td>Prenatal hospitalization</td>
<td>2.17^{**}</td>
<td>1.23, 3.84</td>
</tr>
<tr>
<td>Neonatal medical treatment within 1 week after birth</td>
<td>4.74^{***}</td>
<td>2.67, 8.40</td>
</tr>
<tr>
<td>Vaginal bleeding</td>
<td>0.00</td>
<td><0.001, 999.999</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>2.05^{†}</td>
<td>0.87, 4.84</td>
</tr>
</tbody>
</table>

Table 3 displays parameter estimates and odds ratios for all multiple regression and logistic regression analyses. Ninety-five percent confidence intervals also are displayed. Model 1 examined the effects of group status on OCs, after controlling for maternal age and parity. Model 2 examined whether smoking during pregnancy mediated the effects of group status on OCs by adding smoking as a covariate. Model 2 also controlled for maternal age and parity.

$p=0.999$, $p=0.078$, $p≤0.05$, $**p≤0.01$, $***p≤0.001$
available. Another possibility is that other factors, such as increased maternal stress, health-risk behaviors not measured in this study, and/or increased genetic liability for the disorder masked the effects of smoking on premature delivery among cases. Future studies are necessary to unravel the potential contributors linking schizophrenic status and decreased gestational length.

The present study also found that schizophrenic mothers were significantly older than the other comparison groups and increased maternal age has been associated with a variety of OCs (Cogswell and Yip, 1995; Feldman et al., 2000; Lu and Halfon, 2003). Differences in parity also were found among groups, however there was only a trend difference between schizophrenic women and controls, with schizophrenic women tending to have more previous deliveries than controls, which is typically associated with fewer OCs (Cogswell and Yip, 1995; Feldman et al., 2000; Lu and Halfon, 2003). The present study controlled for these variables in analyses to focus on the study hypotheses; however, differences in maternal age highlight the necessity for future studies to consider how maternal characteristics may influence risk of OCs.

Overall, the results of this study raise the possibility that increases in all OCs among schizophrenic mothers may be mediated by health-risk behaviors that were not examined in this study, such as poor nutrition, limited prenatal care, decreased prenatal vitamin use, neuroleptic use, and substance abuse. There has been a paucity of large, case controlled studies examining the use of neuroleptic medications during pregnancy on risk of OCs, although the available studies have reported mixed findings (reviewed in Iqbal et al., 2003; Patton et al., 2002). Conversely, discontinuation of neuroleptic use during pregnancy has been associated with a worsening of symptoms, often leading to psychotic episodes in relatively asymptomatic women (reviewed in McNeil et al., 1984; Miller, 1997), which can have multiple consequences for prenatal health, including increased stress, poor nutrition, poor self-care, and other risky behaviors (Miller, 1997). Unfortunately, data on medication use and other health-risk behaviors were not available for the women used in this study.

It also is possible that schizophrenic pregnant women experience increased anxiety and stress during pregnancy, which has been associated with a series of OCs, such as shortened gestational length (Dunkel-Schetter, 1998; Wadhwa et al., 2001). No studies have systematically examined whether schizophrenic pregnant women experience augmented stress during pregnancy, however there is some data suggesting that the pregnancies of schizophrenic women are more likely to be unplanned and a result of coerced sexual encounters (Miller, 1997; Miller and Finnerty, 1996). In addition, some schizophrenic women will lose custody of their child after delivery due to active psychotic states, which may augment psychotic symptomatology during pregnancy and/or pregnancy-related anxiety (Miller, 1997). Addition exploration into the potentially distinct experiences of schizophrenic pregnant women would be useful to determine factors that could increase the risk of OCs.

There are multiple limitations of this study. One limitation is that a high-risk sample was chosen to form a population of women with an increased incidence of OCs (mothers with hypoxic births); however, this design may limit the generalizability of our findings to low-risk populations. In addition, we only examined 1 health-risk behavior during pregnancy. As mentioned previously, schizophrenic women are at risk for many health-risk behaviors that could portend increases in OCs; therefore, further exploration into the role of these behaviors on OCs is necessary. Lastly, other variables that may be associated with schizophrenic status, such as other health-risk behaviors, psychoactive medication use, and increased psychosocial stress should be examined as possible mediators between schizophrenic status and increased OCs.

5. Role of the funding source

Funding for this study was provided by a gift from Garen and Shari Staglin.

6. Contributors

Lauren M. Ellman wrote the manuscript, analyzed the data, and primarily determined the idea for the study. Matti Huttunen and Jouko Lönnqvist handled all of the aspects of the study that were carried out in Finland, including registry searches and explanation of the databases. In addition, both authors contributed their ideas in the construction of the manuscript. Tyrone D. Cannon participated in every part of the study, including idea formation, statistical analyses, and interaction with collaborators in Finland.

Acknowledgment

This research was supported by a gift to the UCLA Foundation from Garen and Shari Staglin. The authors wish to thank Theodorus van Erp, Katherine Karsgodt, and Antti Tanskanen for their contributions.

References

