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Abstract

This paper considers identification and estimation of the Quantile Treatment Effect
on the Treated (QTT) under a straightforward distributional extension of the most
commonly invoked Mean Difference in Differences assumption used for identifying the
Average Treatment Effect on the Treated (ATT). Identification of the QTT is more
complicated than the ATT though because it depends on the unknown dependence
between the change in untreated potential outcomes and the initial level of untreated
potential outcomes for the treated group. To address this issue, we introduce a new
Copula Stability Assumption that says that the missing dependence is constant over
time. Under this assumption and when panel data is available, the missing dependence
can be recovered, and the QTT is identified. Second, we allow for identification to
hold only after conditioning on covariates and provide very simple estimators based on
propensity score re-weighting for this case. We use our method to estimate the effect
of increasing the minimum wage on quantiles of local labor markets’ unemployment
rates and find significant heterogeneity.
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1 Introduction

Although most research using program evaluation techniques focuses on estimating the

average effect of participating in a program or treatment, in some cases a researcher may

be interested in understanding the distributional impacts of treatment participation. For

example, for two labor market policies with the same mean impact, policymakers are likely

to prefer a policy that tends to increase income in the lower tail of the income distribution to

one that tends to increase income in the middle or upper tail of the income distribution. In

contrast to the standard linear model, the treatment effects literature explicitly recognizes

that the effect of treatment can be heterogeneous across different individuals (Heckman

and Robb 1985; Heckman, Smith, and Clements 1997). Recently, many methods have been

developed that identify distributional treatment effect parameters under common identifying

assumptions such as selection on observables (Firpo 2007), access to an instrumental variable

(Abadie, Angrist, and Imbens 2002; Chernozhukov and Hansen 2005; Carneiro and Lee 2009;

Frolich and Melly 2013), or access to repeated observations over time (Athey and Imbens

2006; Bonhomme and Sauder 2011; Chernozhukov, Fernandez-Val, Hahn, and Newey 2013;

Jun, Lee, and Shin 2016). This paper focuses on identifying and estimating a particular

distributional treatment effect parameter called the Quantile Treatment Effect on the Treated

(QTT) using a Difference in Differences assumption for identification.

Empirical researchers commonly employ Difference in Differences assumptions to credibly

identify the Average Treatment Effect on the Treated (ATT) (early examples include Card

1990; Card and Krueger 1994). Despite the prevalence of DID methods in applied work, there

has been very little empirical work studying the distributional effects of a treatment with

identification that exploits having access to repeated observations over time (Recent excep-

tions include Meyer, Viscusi, and Durbin 1995; Finkelstein and McKnight 2008; Pomeranz

2015; Havnes and Mogstad 2015).

The first contribution of the current paper is to provide identification and estimation

results for the QTT under a straightforward extension of the most common Mean Difference

in Differences Assumption (Heckman and Robb 1985; Heckman, Ichimura, Smith, and Todd

1998; Abadie 2005). In particular, we strengthen the assumption of mean independence

between (i) the change in untreated potential outcomes over time and (ii) whether or not

an individual is treated to full independence. We call this assumption the Distributional

Difference in Differences Assumption.

For empirical researchers, methods developed under the Distributional Difference in Dif-

ferences Assumption are valuable precisely because the identifying assumptions are straight-

forward extensions of the Mean Difference in Differences assumptions that are frequently
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employed in applied work. This means that almost all of the intuition for applying a Dif-

ference in Differences method for the ATT will carry over to identifying the QTT using our

method.

Although applying a Mean Difference in Differences assumption leads straightforwardly

to identification of the ATT, using the Distributional Difference in Differences Assumption to

identify the QTT faces some additional challenges. The reason for the difference is that Mean

Difference in Differences exploits the linearity of the expectation operator. In fact, with only

two periods of data (which can be either repeated cross sections or panel) and under the

same Distributional Difference in Differences assumption considered in the current paper,

the QTT is known to be partially identified (Fan and Yu 2012) without further assumptions.

In practice, these bounds tend to be quite wide. Lack of point identification occurs because

the dependence between (i) the distribution of the change in untreated outcomes for the

treated group and (ii) the initial level of untreated potential outcomes for the treated group

is unknown. For identifying the ATT, knowledge of this dependence is not required and

point identification results can be obtained.

To move from partial identification back to point identification, we introduce a new

assumption which we call the Copula Stability Assumption. This assumption says that the

copula, which captures the unknown dependence mentioned above, does not change over

time. To give an example, consider the case where the outcome of interest is earnings. The

Copula Stability Assumption says that if we observe in the past that the largest earnings

increases tended to go to those with the highest earnings, then, in the present (and in the

absence of treatment), the largest earnings increase would have gone to those with the highest

earnings. Importantly, this does not place any restrictions on the marginal distributions of

outcomes over time allowing, for example, the outcomes to be non-stationary. There are

two additional requirements for invoking this assumption relative to the Mean Difference in

Differences Assumption: (i) access to panel data (repeated cross sections is not enough) and

(ii) access to at least three periods of data (rather than at least two periods of data) where

two of the periods must be pre-treatment periods and the third period is post-treatment. We

show that the additional requirements that the Copula Stability Assumption places on the

type of model that is consistent with the Distributional Difference in Differences Assumption

are small.

The second contribution of the paper is to extend the results to the case where the

identifying assumptions hold conditional on covariates. There are several reasons why this

is an important contribution. First, we show that, for many models where an unconditional

Mean Difference in Differences assumption holds, the Distributional Difference in Differences

Assumption is likely to require conditioning on covariates. Second, conditional on covariates
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versions of our assumptions can allow the path of untreated potential outcomes to depend

on observed characteristics.

Having simple identification results when identification holds conditional on some covari-

ates stands in contrast to existing methods for estimating QTTs. The methods are either (i)

unavailable or at least computationally challenging when the researcher desires to make the

identifying assumptions conditional on covariates or (ii) require strong parametric assump-

tions on the relationship between the covariates and outcomes. Because the ATT can be

obtained by integrating the QTT and is available under weaker assumptions, a researcher’s

primary interest in studying the QTT is likely to be in the shape of the QTT rather than the

location of the QTT. In this regard, the parametric assumptions required by other methods

to accommodate covariates may be restrictive because nonlinearities or misspecification of

the parametric model could easily be confused with the shape of the QTT. This difference

between our method and other methods appears to be fundamental. To our knowledge,

there is no work on nonparametrically allowing for conditioning on covariates in alternative

methods; and, at the least, doing so would be computationally challenging. Moreover, a

similar propensity score re-weighting technique to the one used in the current paper does

not appear to be available for existing methods.

Based on our identification results, estimation of the QTT is straightforward and com-

putationally fast. Without covariates, estimating the QTT relies only on estimating un-

conditional moments, empirical distribution functions, and empirical quantiles. When the

identifying assumptions require conditioning on covariates, we estimate the propensity score

in a first step, but second step estimation is simple and fast. We show that our estimate of the

QTT converges to a Gaussian process at the parametric rate
√
n even when the propensity

score is estimated nonparametrically. This result allows us to conduct uniform inference over

a range of quantiles and can test, for example, whether the distribution of treated potential

outcomes stochastically dominates the distribution of untreated potential outcomes.

We conclude the paper by analyzing the effect of increasing the minimum wage on quan-

tiles of the unemployment rates of local labor markets. Despite the average effect of in-

creasing the minimum wage on the unemployment rate being close to 0, using our method,

we find that the average effect masks substantial heterogeneity. The difference between the

10th percentile of unemployment among counties that had higher minimum wages and the

10th percentile of counterfactual unemployment had they not had higher minimum wages is

negative. However, the effect is quite different elsewhere in the distribution. At the median

and upper quantiles, the effect is positive. As long as counties do not change their ranks

(or at least do not change their ranks too much) in the distribution of unemployment rates

due to the increase in the minimum wage, these results indicate that counties with tight
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labor markets experienced decreases in the unemployment rate following the minimum wage

increase while counties with higher unemployment rates experienced more unemployment

due to the increase in the minimum wage. We find similar results using alternative methods

such as Quantile Difference in Differences and Change in Changes (Athey and Imbens 2006).

2 Background

The setup and notation used in this paper is common in the statistics and econometrics

literature. We focus on the case of a binary treatment. Let Dt = 1 if an individual is treated

at time t (we suppress an individual subscript i throughout to minimize notation). We

consider a panel data case where the researcher has access to at least three periods of data

for all agents in the sample. We also focus, as is common in the Difference in Differences

literature, on the case where no one receives treatment before the final period which simplifies

the exposition; a similar result for a subpopulation of the treated group could be obtained

with little modification in the more general case. The researcher observes outcomes Yt, Yt−1,

and Yt−2 for each individual in each time period. The researcher also possibly observes

some covariates X which, as is common in the Difference in Differences setup, we assume are

constant over time. This assumption could also be relaxed with appropriate strict exogeneity

conditions.

Following the treatment effects literature, we assume that individuals have potential

outcomes in the treated or untreated state: Y1t and Y0t, respectively. The fundamental

problem is that exactly one (never both) of these outcomes is observed for a particular

individual. Using the above notation, the observed outcome Yt can be expressed as follows:

Yt = DtY1t + (1−Dt)Y0t

Because no one is treated in previous periods, untreated potential outcomes are observed

for both the treated group and untreated group.1 That is,

Yt−1 = Y0t−1 and Yt−2 = Y0t−2

For any particular individual, the unobserved potential outcome is called the counterfac-

tual. The individual’s treatment effect, Y1t − Y0t is therefore never available because only

one of the potential outcomes is observed for a particular individual. Instead, the literature

1To clearly distinguish between treated and untreated potential outcomes, we use a potential outcomes
notation where Y1t, Y0t−1, Y0t−2 are observed outcomes for the treated group (but Y0t is not an observed
outcome for the treated group) and Y0t, Y0t−1, and Y0t−2 are observed outcomes for the untreated group.
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has focused on identifying and estimating various functionals of treatment effects and the

assumptions needed to identify them. We discuss some of these treatment effect parameters

next.

In cases where (i) the effect of a treatment is thought to be heterogeneous across indi-

viduals and (ii) understanding this heterogeneity is of interest to the researcher, estimating

distributional treatment effects such as quantile treatment effects is likely to be impor-

tant. Comparing the distribution of observed outcomes to a counterfactual distribution of

untreated potential outcomes is a very important ingredient for evaluating the effect of a

program or policy (Sen 1997; Carneiro, Hansen, and Heckman 2001) and provides more in-

formation than the average effect of the program alone. For example, a policy maker may

be in favor of implementing a job training program that increases the lower tail of the dis-

tribution of earnings while decreasing the upper tail of the distribution of earnings even if

the average effect of the program is zero.

For a random variable X, the τ -quantile, xτ , of X is defined as

xτ = G−1
X (τ) ≡ inf{x : FX(x) ≥ τ} (1)

An example is the 0.5-quantile – the median.2 Researchers interested in program evaluation

may be interested in other quantiles as well. For example, researchers studying a job training

program may be interested in the effect of the program on low income individuals. In this

case, they may study the 0.05 or 0.1-quantile. Similarly, researchers studying the effect of a

policy on high earners may look at the 0.95-quantile.

Let FY1t(y) and FY0t(y) denote the distributions of Y1t and Y0t, respectively. Then, the

Quantile Treatment Effect on the Treated (QTT)3 is defined as

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ) (2)

The QTT is the parameter studied in this paper. Difference in Differences methods are

useful for studying treatment effect parameters for the treated group because they make

use of observing untreated outcomes for the treated group in a time period before they

become treated. Difference in Differences methods for the average effect of participating

in a treatment also identify the Average Treatment Effect on the Treated, not the average

treatment effect for the population at large.

2In this paper, we study Quantile Treatment Effects. A related topic is quantile regression. See Koenker
(2005).

3Quantile Treatment Effects were first studied by Doksum (1974) and Lehmann (1974)
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3 Identification

Let ∆Y0t = Y0t − Y0t−1 denote the time difference in untreated potential outcomes. The

most common nonparametric assumption used to identify the ATT in Difference in Differ-

ences models is the following:

Assumption 3.1 (Mean Difference in Differences).

E[∆Y0t|Dt = 1] = E[∆Y0t|Dt = 0]

This is the “parallel trends” assumptions common in applied research. It states that,

on average, the unobserved change in untreated potential outcomes for the treated group

is equal to the observed change in untreated outcomes for the untreated group. To study

the QTT, Assumption 3.1 needs to be strengthened because the QTT depends on the entire

distribution of untreated outcomes for the treated group rather than only the mean of this

distribution.

The next assumption strengthens Assumption 3.1 and this is the assumption maintained

throughout the paper.

Distributional Difference in Differences Assumption.

∆Y0t ⊥⊥ Dt

The Distributional Difference in Differences Assumption says that the distribution of the

change in potential untreated outcomes does not depend on whether or not the individual

belongs to the treatment or the control group. Intuitively, it generalizes the idea of “par-

allel trends” holding on average to the entire distribution. In applied work, the validity

of using a Difference in Differences approach to estimate the ATT hinges on whether the

unobserved trend for the treated group can be replaced with the observed trend for the un-

treated group. This is exactly the same sort of thought experiment that needs to be satisfied

for the Distributional Difference in Differences Assumption to hold. Being able to invoke

a standard assumption to identify the QTT stands in contrast to the existing literature on

identifying the QTT in similar models which generally require less familiar assumptions on

the relationship between observed and unobserved outcomes.

Using statistical results on the distribution of the sum of two known marginal distribu-

tions, Fan and Yu (2012) show that this assumption is not strong enough to point identify

the counterfactual distribution FY0t|Dt=1(y), but it does partially identify it. In practice,

these bound tend to be very wide – too wide to be useful in most applications.
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3.1 Main Results: Identifying QTT in Difference in Differences

Models

The main theoretical contribution of this paper is to impose a Distributional Difference

in Differences Assumption plus additional data requirements and an additional assumption

that may be plausible in many applications to identify the QTT. The additional data re-

quirement is that the researcher has access to at least three periods of panel data with two

periods preceding the period where individuals may first be treated. This data requirement

is stronger than is typical in most Difference in Differences setups which usually only require

two periods of repeated cross-sections (or panel) data. The additional assumption is that

the dependence – that is, the copula – between (i) the distribution of (∆Y0t|Dt = 1) (the

change in the untreated potential outcomes for the treated group) and (ii) the distribution

of (Y0t−1|Dt = 1) (the initial untreated outcome for the treated group) is stable over time.

This assumption says that if, in the past, the largest increases in outcomes tend to go to

those at the top of the distribution, then in the present, the largest increases in outcomes

will tend to go to those who start out at the top of the distribution. It does not restrict what

the distribution of the change in outcomes over time is nor does it restrict the distribution

of outcomes in the previous period; instead, it restricts the dependence between these two

marginal distributions. We discuss this assumption in more detail and show how it can be

used to point identify the QTT below.

Intuitively, the reason why a restriction on the dependence between the distribution

of (∆Y0t|Dt = 1) and (Y0t−1|Dt = 1) is useful is the following. If the joint distribution

(∆Y0t, Y0t−1|Dt = 1) were known, then FY0t|Dt=1(y) (the distribution of interest) could be

derived from it. The marginal distributions F∆Y0t|Dt=1(δ) (through the Distributional Dif-

ference in Differences assumption) and FY0t−1|Dt=1(y′) (from the data) are both identified.

However, because observations are observed separately for untreated and treated individu-

als, even though each of these marginal distributions are identified from the data, the joint

distribution is not identified. Since, from Sklar’s Theorem (Sklar 1959), joint distributions

can be expressed as the copula function (capturing the dependence) of the two marginal

distributions, the only piece of information that is missing is the copula.4 We use the idea

that the dependence is the same between period t and period (t− 1). With this additional

information, F∆Y0t,Yt−1|Dt=1(δ, y′) is identified and therefore the counterfactual distribution

of untreated potential outcomes for the treated group, FY0t|Dt=1(y) is identified.

The time invariance of the dependence between F∆Y0t|Dt=1(δ) and FY0t−1|Dt=1(y′) can

4For a continuous distribution, the copula representation is unique. Joe (1997), Nelsen (2007), and Joe
(2015) are useful references for more details on copulas.
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be expressed in the following way. Let F∆Y0t,Y0t−1|Dt=1(δ, y′) be the joint distribution of

(∆Y0t|Dt = 1) and (Y0t−1|Dt = 1). By Sklar’s Theorem

F∆Y0t,Y0t−1|Dt=1(δ, y′) = C∆Y0t,Y0t−1|Dt=1

(
F∆Y0t|Dt=1(δ), FY0t−1|Dt=1(y′)

)
where C∆Y0t,Y0t−1|Dt=1(·, ·) is a copula function.5 Next, we state the second main assumption

which replaces the unknown copula with copula for the same outcomes but in the previous

period which is identified because no one is treated in the periods before t.

Copula Stability Assumption.

C∆Y0t,Y0t−1|Dt=1(·, ·) = C∆Y0t−1,Y0t−2|Dt=1(·, ·)

The Copula Stability Assumption says that the dependence between the marginal distri-

butions F∆Y0t|Dt=1 and FY0t−1|Dt=1 is the same as the dependence between the distributions

F∆Y0t−1|Dt=1 and FY0t−2|Dt=1. It is important to note that this assumption does not require any

particular dependence structure, such as independence or perfect positive dependence, be-

tween the marginal distributions; rather, it requires that whatever the dependence structure

is in the past, one can recover it and reuse it in the current period. It also does not require

choosing any parametric copula. However, it may be helpful to consider a simple, more para-

metric example. If the copula of the distribution of (∆Y0t−1|Dt = 1) and the distribution of

(Y0t−2|Dt = 1) is Gaussian with parameter ρ, the Copula Stability Assumption says that the

copula continues to be Gaussian with parameter ρ in period t but the marginal distributions

are allowed to change in unrestricted ways. Likewise, if the copula is Archimedean, the

Copula Stability Assumption requires the generator function to be constant over time but

the marginal distributions can change in unrestricted ways.

One of the key insights of this paper is that, in some particular situations such as the panel

data case considered in the paper, we are able to observe the historical dependence between

the marginal distributions. There are many applications in economics where the missing

piece of information for identification is the dependence between two marginal distributions.

In those cases, previous research has resorted to (i) assuming some dependence structure

such as independence or perfect positive dependence or (ii) varying the copula function over

some or all possible dependence structures to recover bounds on the joint distribution of

interest. To our knowledge, we are the first to use historical observed outcomes to obtain

a historical dependence structure and then assume that the dependence structure is stable

over time.

5The bounds in Fan and Yu (2012) arise by replacing the unknown copula function C∆Y0t,Y0t−1|Dt=1(·, ·)
with those that make the upper bound the largest and lower bound the smallest.
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Before presenting the identification result, we need some additional assumptions.

Assumption 3.2. Let ∆Yt|Dt=0 denote the support of the change in untreated outcomes

for the untreated group. Let ∆Yt−1|Dt=1, Yt−1|Dt=1, and Yt−2|Dt=1 denote the support of the

change in untreated outcomes for the treated group in period (t− 1), the support of untreated

outcomes for the treated group in period (t−1), and the support of untreated outcomes for the

treated group in period (t−2), respectively. We assume that ∆Yt|Dt=0, ∆Yt−1|Dt=1, Yt−1|Dt=1,

and Yt−2|Dt=1 are compact. Also, each of the random variables ∆Yt for the untreated group

and ∆Yt−1, Yt−1, and Yt−2 for the treated group are continuously distributed on their support

with densities that are bounded from above and bounded away from 0.

Assumption 3.3. The observed data (Ydt,i, Yt−1,i, Yt−2,i, Xi, Dit) are independently and iden-

tically distributed.

Assumption 3.2 says that outcomes are continuously distributed. Copulas are unique on

the range of their marginal distributions; thus, continuously distributed outcomes guarantee

that the copula is unique. However, for the CSA, one could weaken this assumption to

Range(F∆Y0t|Dt=1) ⊆ Range(F∆Yt−1|Dt=1) and Range(FYt−1|Dt=1) ⊆ Range(FYt−2|Dt=1) and

still obtain point identification. On the other hand, although neither our DDID Assumption

nor the standard mean DID Assumption explicitly require continuously distributed out-

comes, it should be noted that standard limited dependent variable models with unobserved

heterogeneity would not generally satisfy either of these DID assumptions. Compactness is

not needed for identification, but we use it for inference later in the paper. Assumption 3.3

could potentially be relaxed in several ways. More periods of data could be available – our

method requires at least three periods of data, but more periods could be incorporated in a

straightforward way. Also, our setup could allow for some individuals to be treated in earlier

periods than the last one though our results would continue to go through for the group

of individuals that are first treated in the last period; considering the case where no one is

treated before the last period is standard DID setup. Assumption 3.3 also says that other

covariates X are time invariant. This assumption can be relaxed by focusing on the subset

of individuals whose covariates do not change over time. Appendix A also discusses the

possibility of including time varying covariates though they must enter our model is a more

restrictive way than time invariant covariates. Essentially, the problem with time varying

covariates is that that one cannot separate individuals changing ranks in the distribution of

outcomes over time due to changes in covariates or due to unobservables. Finally, we assume

that we observe treatment status for each individual; however, in many DID applications,

treatments may be defined by location and individuals may move between treatment regimes

over time (Lee and Kang 2006) though we do not consider this complication.
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Theorem 1. Under the Distributional Difference in Differences Assumption, the Copula

Stability Assumption, and Assumptions 3.2 and 3.3

FY0t|Dt=1(y)

= E
[
1{F−1

∆Yt|Dt=0(F∆Yt−1|Dt=1(∆Yt−1)) ≤ y − F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yt−2))}|Dt = 1

]
(3)

and

QTT(τ) = F−1
Yt|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified

Theorem 1 is the main identification result of the paper. It says that the counterfactual

distribution of untreated outcomes for the treated group is identified. To provide some

intuition, we provide a short outline of the proof. First, notice that P(Y0t ≤ y|Dt = 1) =

E[1{∆Y0t + Y0t−1 ≤ y}|Dt = 1]6 But ∆Y0t is not observed for the treated group because Y0t

is not observed. The Copula Stability Assumption effectively allows us to look at observed

outcomes in the previous periods for the treated group and “adjust” them forward. Finally,

the Distributional Difference in Differences Assumption allows us to replace F−1
∆Y0t|Dt=1(·)

with F−1
∆Y0t|Dt=0(·) which is just the quantiles of the distribution of the change in (observed)

untreated outcomes for the untreated group.

The following example shows what additional conditions need to be satisfied for our

model to be valid in a standard DID setup.

Example 1. Consider the following baseline model for Mean DID.

Y0it = θt + Ci + vit

where θt is a time fixed effect that is common for the treated and untreated groups, Ci is

individual heterogeneity that may be distributed differently across the treated group and un-

treated group, and vit are time varying unobservables.7 For Mean DID to identify the ATT,

it must be the case that E[∆vit|Dit = 1] = E[∆vit|Dit = 0]. Sufficient conditions for the

assumptions in our model to hold are (i) ∆vit ⊥⊥ Dit and (ii) (vit, vit−1|Ci, Dit = 1) and

6Adding and subtracting Y0t−1 is also the first step for showing that the Mean Difference in Differences
Assumption identifies E[Y0t|Dt = 1]; the problem is much easier in the mean case though due to the linearity
of expectations and no indicator function.

7One other thing to note in this model is that it does not restrict how treated outcomes are generated
at all which is standard in the Mean DID case and holds in our case as well.
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(vit−1, vit−2|Ci, Dt = 1) follow the same distribution.

Condition (i) just strengthens Mean DID to Distributional DID. Condition (ii) implies

that the Copula Stability Assumption will hold. Notice that it allows for serial correlation in

the time varying unobservables, and it will hold automatically if the time varying unobserv-

ables are iid.

4 Allowing for covariates

In our view, the key reason that there has been little use of distributional methods with

panel data is that existing work has focused primarily on the case without conditioning on

other covariates.8 This section extends the previous results to the case where a Conditional

DDID assumption holds.

Conditional Distributional Difference in Differences Assumption.

∆Y0t ⊥⊥ Dt|X

This assumption says that, after conditioning on covariates X, the distribution of the

change in untreated potential outcomes for the treated group is equal to the change in

untreated potential outcomes for the untreated group. The next example shows that having

the conditional DDID assumption may be important even in cases where an unconditional

mean DID assumption holds and would identify the ATT

Example 2. Consider the following model

Yit = q(Uit, Dit, Xi) + Ci

with (Uit, Uit−1), (Uit−1, Uit−2)|X,C,D ∼ FU1,U2 where FU1,U2 is a bivariate distribution with

uniform marginals, C is time invariant unobserved heterogeneity that may be correlated with

observables, and q(τ, d, x) is strictly increasing in τ for all (d, x) ∈ {0, 1} × X .

In this model,

• The Unconditional Mean Difference in Differences Assumption holds

• The Unconditional Distributional Difference in Differences Assumption does not hold

• The Conditional Distributional Difference in Differences Assumption holds

8Recent work such as Melly and Santangelo (2015) and Callaway, Li, and Oka (2016) has begun relaxing
this restriction.
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• The Unconditional Copula Stability Assumption holds

Example 2 is a Skorohod representation for panel quantile regression while allowing for

serial correlation among U . This model allows the effect of covariates to be different at

different parts of the conditional distribution. For example, if Y is wages, it is well known

that the effect of education is different at different parts of the conditional distribution. One

sufficient condition for the unconditional DDID assumption is that X has only a location

effect on outcomes. Another sufficient condition is that the distribution of X is the same

for the treated and untreated groups. Neither of these conditions seems likely to hold in

the types of applications where a researcher is interested in understanding the distributional

effect of a program or policy.

Example 2 is a leading case for using distributional methods to understand heterogeneity

in the effect of a treatment, and the main conclusion to be reached from this example is

that even when an unconditional mean DID assumption holds, one is likely to need to

condition on covariates to justify the DDID assumption. On the other hand, in this model,

the unconditional CSA continues to hold.9

By invoking the Conditional Distributional Difference in Differences Assumption rather

than the Distributional Difference in Differences Assumption, it is important to note that,

for the purpose of identification, the only part of Theorem 1 that needs to be adjusted is the

identification of F∆Y0t|Dt=1(δ). Under the Distributional Difference in Differences Assump-

tion, this distribution could be replaced directly by F∆Yt|Dt=0(δ); however, now we utilize

a propensity score re-weighting technique to replace this distribution with another object

(discussed more below). Importantly, all other objects in Theorem 1 can be handled in ex-

actly the same way as they were previously. Particularly, the Copula Stability Assumption

continues to hold without needing any adjustment such as conditioning on X.

With covariates, we also require an additional standard assumption for identification.

Assumption 4.1. p ≡ P (Dt = 1) > 0 and p(x) ≡ P (Dt = 1|X = x) < 1.

The first part of this assumption says that there is some positive probability that indi-

viduals are treated. The second part says that for an individual with any possible value of

covariates x, there is some positive probability that he will be treated and a positive prob-

ability he will not be treated. This is a standard overlap assumption used in the treatment

effects literature.
9Appendix A discusses the possibility of using the conditional DDID assumption along with a conditional

CSA. Identification continues to go through in this case. The advantage of this approach is that it could
be used in the case where the trend in outcomes depends on covariates. This could be important in many
applications; for example, suppose that the outcome of interest is wages, the trend in wages may be different
for individuals with different education levels. The cost of this approach is that nonparametric estimation
would be very challenging in many applications.
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Theorem 2. Under the Conditional Distributional Difference in Differences Assumption,

the Copula Stability Assumption, and Assumptions 3.2, 3.3 and 4.1

FY0t|Dt=1(y)

= E
[
1{F−1p

∆Y0t|Dt=1(F∆Yt−1|Dt=1(∆Yt−1)) ≤ y − F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yt−2))}|Dt = 1

]
where

F p
∆Y0t|Dt=1(δ) = E

[
1−Dt

p

p(X)

1− p(X)
1{∆Yt ≤ δ}

]
(4)

and

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified

This result is very similar to the main identification result in Theorem 1. The only

difference is that F∆Y0t|Dt=1(·) is no longer identified by the distribution of untreated potential

outcomes for the untreated group; instead, it is replaced by the re-weighted distribution in

Equation 4. Equation 4 can be understood in the following way. It is a weighted average

of the distribution of the change in outcomes experienced by the untreated group. The
p(X)

1− p(X)
term weights up untreated observations that have covariates that make them more

likely to be treated. Equation 4 is almost exactly identical to the re-weighting estimators

given in Hirano, Imbens, and Ridder (2003), Abadie (2005), and Firpo (2007); the only

difference is the term 1{∆Yt ≤ δ} in our case is given by Yt, ∆Yt, and 1{Yt ≤ y} in each of

the other cases, respectively.

5 Estimation

In this section, we outline the estimation procedure. Then, we provide results on consis-

tency and asymptotic normality of the estimators.

We estimate

ˆQTT(τ) = F̂
−1

Y1t|Dt=1(τ)− F̂
−1

Y0t|Dt=1(τ)

The first term is estimated directly from the data by inverting the estimated empirical
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distribution of observed outcomes for the treated group.

F̂
−1

Y1t|Dt=1(τ) = inf{y : F̂Yt|Dt=1(y) ≥ τ}

We estimate counterfactual quantiles by

F̂
−1

Y0t|Dt=1(τ) = inf{y : F̂Y0t|Dt=1(y) ≥ τ}

where

F̂Y0t|Dt=1(y) =
1

nT

∑
i∈T

1{F̂
−1

∆Yt|Dt=0(F̂∆Yt−1|Dt=1(∆Yit−1)) ≤ y − F̂
−1

Yt−1|Dt=1(F̂Yt−2|Dt=1(Yit−2))}

which follows from the identification result in Theorem 1 and where distribution functions

are estimated by empirical distribution functions and quantile functions are estimated by

inverting empirical distribution functions.

The final issue is estimating F−1
∆Y0t|Dt=1(ν) when identification depends on covariates.

Using the identification result in Theorem 2, we can easily construct an estimator of the

distribution function

F̂∆Y0t|Dt=1(δ) =
1

n

n∑
i=1

(1−Dit)

p

p̂(Xi)

(1− p̂(Xi))
1{∆Yt,i ≤ δ}

/
1

n

n∑
i=1

(1−Dit)

p

p̂(Xi)

(1− p̂(Xi))

where the last term in the denominator ensures that F̂∆Y0t|Dt=1 is a distribution function

and is asymptotically negligible. One can invert this distribution to obtain its quantiles.

When identification depends on covariates X, then there must be a first step estimation

of the propensity score. We consider the case where the propensity score is estimated non-

parametrically and show that, even though the propensity score itself converges at a slower

rate, our estimator of the QTT converges at the parametric
√
n rate. Also, simpler para-

metric estimators of the propensity score such as logit or probit can be used instead. All of

our main results continue to go though – particularly, the empirical bootstrap can still be

used for inference when the propensity score is estimated either parametrically under some

mild regularity conditions.

5.1 Inference

This section considers the asymptotic properties of the estimator. First, it focuses on the

case with no covariates and then extends the results to the case where the Distributional
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Difference in Differences Assumption holds conditional on covariates. The proofs for each of

the results in this section are given in the Appendix.

5.1.1 No Covariates Case

This section shows that our estimator of the QTT obeys a functional central limit theo-

rem. In order to show this, the key step is to show that the counterfactual distribution of

untreated potential outcomes for the treated group is Hadamard Differentiable.

We denote empirical processes by

ĜX(x) =
√
n(F̂X(x)− FX(x))

Next, let Ỹit = F−1
∆Yt|Dt=0(F∆Yt−1|Dt=1(∆Yit−1)) + F−1

Yt−1|Dt=1(FYt−2|Dt=1(Yit−2)); these are

pseudo-observations if each distribution and quantile function were known. Let F̃Y0t|Dt=1(y) =
1
nT

∑
i∈T 1{Ỹit ≤ y}. Then, define

G̃Y0t|Dt=1(y) =
√
n(F̃Y0t|Dt=1(y)− FY0t|Dt=1(y))

As a first step, we establish a functional central limit theorem for the empirical processes

of each of the terms used in our identification result.

Proposition 1. Under the Distributional Difference in Differences Assumption, Copula Sta-

bility Assumption, and Assumptions 3.2 and 3.3

(Ĝ∆Yt|Dt=0, Ĝ∆Yt−1|Dt=1, G̃Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) (W1,W2,V0,V1,W3,W4)

in the space S = l∞(∆Yt|Dt=0)×l∞(∆Yt−1|Dt=1)×l∞(Y0t|Dt=1)×l∞(Yt|Dt=1)×l∞(Yt−1|Dt=1)×
l∞(Yt−2|Dt=1) where (W1,W2,V0,V1,W3,W4) is a tight Gaussian process with mean 0 and

block diagonal covariance matrix V (y, y′) = diag(V1(y, y′), V2(y, y′)) where

V1(y, y′) =
(
F∆Yt|Dt=0(y1 ∧ y′1)− F∆Yt|Dt=0(y1)F∆Yt|Dt=0(y′1)

)
/(1− p)

and

V2(y, y′) = E[ψ(y)ψ(y′)′]
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for y = (y1, y2, y3, y4, y5, y6) ∈ S and y′ = (y′1, y
′
2, y
′
3, y
′
4, y
′
5, y
′
6) ∈ S and

ψ(y) = 1/
√
p


1{∆Yt−1 ≤ y2} − F∆Yt−1|Dt=1(y2)

1{Ỹt ≤ y3} − FỸt|Dt=1(y3)

1{Yt ≤ y4} − FYt|Dt=1(y4)

1{Yt−1 ≤ y5} − FYt−1|Dt=1(y5)

1{Yt−2 ≤ y6} − FYt−2|Dt=1(y6)


The next result establishes the joint limiting distribution of observed treated outcomes

and counterfactual untreated potential outcomes for the treated group.

Proposition 2. Let Ĝ0(y) =
√
n(F̂Y0t|Dt=1(y)−FY0t|Dt=1(y)) and let Ĝ1(y) =

√
n(F̂Yt|Dt=1(y)−

FYt|Dt=1(y)). Under Assumptions Distributional Difference in Differences Assumption, Cop-

ula Stability Assumption, and Assumptions 3.2 and 3.3

(Ĝ0, Ĝ1) (G0,G1)

where G0 and G1 are tight Gaussian processes with mean 0 with almost surely uniformly

continuous paths on the space Yt|Dt=1 × Y0t|Dt=1 given by

G1 = V1

and

G0 = V0 +

∫ {
W1 ◦ F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)− F∆Yt|Dt=0

(
y −

W4 −W3 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

fYt−1|Dt=1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

)

−W2 ◦ F−1
∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))
}
K(y, v) dFYt−2|Dt=1(v)

where

K(y, v) =
f∆Yt−1|Yt−2,Dt=1(F−1

∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0(y − F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)))

f∆Yt−1|Dt=1 ◦ F−1
∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0 ◦ (y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))

The key step in showing Proposition 2 is establishing the Hadamard Differentiability

of the counterfactual distribution of untreated potential outcomes for the treated group.

Here, V0 is the variance that would obtain for estimating the counterfactual distribution of

untreated potential outcomes for the treated group if each distribution and quantile function

were known. The second term comes from having to estimate each of these distribution and

quantile functions in a first step. With Proposition 2 in hand, our main result for the QTT
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follows straightforwardly by the Hadamard Differentiability of quantiles.

Theorem 3. Suppose FY0t|Dt=1 admits a positive continuous density fY0t|Dt=1 on an interval

[a, b] containing an ε-enlargement of the set {F−1
Y0t|Dt=1(τ) : τ ∈ T } in Y0t|Dt=1 with T ⊂

(0, 1). Under the Distributional Difference in Differences Assumption, the Copula Stability

Assumption, and Assumptions 3.2 and 3.3

√
n( ˆQTT (τ)−QTT (τ)) Ḡ1(τ)− Ḡ0(τ)

where (Ḡ0(τ), Ḡ1(τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡ0(τ) =
G0(F−1

Y0t|Dt=1(τ))

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

and Ḡ1(τ) =
G1(F−1

Yt|Dt=1(τ))

fYt|Dt=1(F−1
Yt|Dt=1(τ))

Estimating the asymptotic variance of our estimator is likely to be quite complicated

particularly due to the presence of density functions which would require smoothing and

choosing some tuning parameters. Instead, we conduct inference using the nonparametric

bootstrap.

Algorithm 1. Let B be the number of bootstrap iterations. For b = 1, . . . , B,

1. Draw a sample of size n with replacement from the original data

2. Compute

ˆQTT
b
(τ) = F̂

−1b

Yt|Dt=1(τ)− F̂
−1b

Y0t|Dt=1(τ)

where

F̂
b

Y0t|Dt=1(y) =
1

nbT

∑
i∈T

1{F̂
−1b

∆Yt|Dt=0(F̂
b

∆Yt−1|Dt=1(∆Y b
it−1)) ≤ y − F̂

−1b

Yt−1|Dt=1(F̂
b

Yt−2|Dt=1(Y b
it−2))}

and the superscript b indicates that the distribution or quantile function is computed

using the bootstrap data.

3. Compute Ib = supτ∈T

∣∣∣ ˆQTT
b
(τ)− ˆQTT (τ)

∣∣∣
Then, a (1− α) confidence band is given by

ˆQTT (τ)− cB1−α/
√
n ≤ QTT (τ) ≤ ˆQTT (τ) + cB1−α/

√
n

where cB1−α is the (1− α) quantile of {Ib}Bb=1.
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The next result shows the validity of the nonparametric bootstrap for our procedure.

Theorem 4. Under the Distributional Difference in Differences Assumption, Copula Stabil-

ity Assumption, and Assumptions 3.2 and 3.3,

√
n
(

ˆQTT
∗
(τ)− ˆQTT (τ)

)
 ∗ Ḡ0(τ)− Ḡ1(τ)

where (Ḡ0, Ḡ1) are as in Theorem 3 and  ∗ indicates weak convergence in probability under

the bootstrap law (Gine and Zinn 1990)

Theorem 4 follows because our estimate of the QTT is Donsker and by Van Der Vaart

and Wellner (1996, Theorem 3.6.1)

5.1.2 Distributional Difference in Differences Assumption holds conditional on

covariates

This section develops the asymptotic properties of our estimator in the case where the

Distributional Difference in Differences Assumption holds conditional on covariates and con-

sider the case where the propensity score is estimated nonparametrically by using series logit

methods. Following Hirano, Imbens, and Ridder (2003), we make the following assumptions

on the propensity score

Assumption 5.1. E[1{∆Y0t ≤ y}|X,Dt = 0] is continuously differentiable for all x ∈ X .

Assumption 5.2. (Distribution of X)

(i) The support X of X is a Cartesian product of compact intervals; that is, X =∏r
j=1[xlj, xuj] where r is the dimension of X and xlj and xuj are the smallest and largest

values in the support of the j-th dimension of X.

(ii) The density of X, fX(·), is bounded away from 0 on X .

Assumption 5.3. (Assumptions on the propensity score)

(i) p(x) is continuously differentiable of order s ≥ 7r where r is the dimension of X.

(ii) There exist p and p̄ such that 0 < p ≤ p(x) ≤ p̄ < 1.

Assumption 5.4. (Series Logit Estimator)

For nonparametric estimation of the propensity score, p(x is estimated by series logit

where the power series of the order K = nν for some 1
4(s/r−1)

< ν < 1
9
.

Remark. Assumptions Assumptions 5.1 to 5.4 are standard assumptions in the literature

which depends on first step estimation of the propensity score. Hirano, Imbens, and Ridder
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(2003) developed the properties of the series logit estimator under the same set of assump-

tions. Similar assumptions have been used in, for example, Firpo (2007) and Donald and

Hsu (2014). Assumption 5.2 says that X is continuously distributed though our setup can

easily handle discrete covariates as well by splitting the sample based on the discrete co-

variates. Assumption 5.3(i) is a standard assumption on differentiability of the propensity

score and guarantees the existence of ν that satisfies the conditions of Assumption 5.4.

Assumption 5.3(ii) is a standard overlap condition.

Proposition 3. Let Ĝp
∆Y0t|Dt=1(δ) =

√
n
(

F̂
p

∆Y0t|Dt=1(δ)− Fp∆Y0t|Dt=1(δ)
)

where FpY0t|Dt=1(δ)

is given in Equation (4). Let Ỹ p
it = F−1p

∆Y0t|Dt=1(F∆Yt−1|Dt=1(∆Yit−1))+F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yit−2)),

let F̃
p

Y0t|Dt=1(y) = 1
nT

∑
i∈T 1{Ỹ

p
it ≤ y}, and let G̃p

Y0t|Dt=1(y) =
√
n
(

F̃
p

Y0t|Dt=1(y)− FY0t|Dt=1(y)
)

.

Under the Conditional Distributional Difference in Differences Assumption, the Copula Sta-

bility Assumption, Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4

(Ĝp
∆Y0t|Dt=1, Ĝ∆Yt−1|Dt=1, G̃

p
Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4)

in the space S = l∞(∆Yt|Dt=0)×l∞(∆Yt−1|Dt=1)×l∞(Y0t|Dt=1)×l∞(Yt|Dt=1)×l∞(Yt−1|Dt=1)×
l∞(Yt−2|Dt=1) where (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4) is a tight Gaussian process with mean 0 and

covariance V (y, y′) = E[ψp(y)ψp(y′)′] for y = (y1, y2, y3, y4, y5, y6) ∈ S and y′ = (y′1, y
′
2, y
′
3, y
′
4, y
′
5, y
′
6) ∈

S and with ψp(y) given by

ψp(y) =



1{∆Y≤y1|X}
p(1−p(X))

(D − p(X)) + 1−D
p

p(X)
1−p(X)

1{∆Yt ≤ y1} − Fp∆Y0t|Dt=1(y1)
D
p
1{∆Yt−1 ≤ y2} − F∆Yt−1|Dt=1(y2)
D
p
1{Ỹt ≤ y3} − FỸt|Dt=1(y3)

D
p
1{Yt ≤ y4} − FYt|Dt=1(y4)

D
p
1{Yt−1 ≤ y5} − FYt−1|Dt=1(y5)

D
p
1{Yt−2 ≤ y6} − FYt−2|Dt=1(y6)


The next result establishes an analogous result to Proposition 2 for the case where iden-

tification depends on covariates.

Proposition 4. Let Ĝp
0(y) =

√
n(F̂

p

Y0t|Dt=1(y)−FpY0t|Dt=1(y)) and let Ĝp
1(y) =

√
n(F̂Yt|Dt=1(y)−

FYt|Dt=1(y)). Under the Conditional Distributional Difference in Differences Assumption,

Copula Stability Assumption, and Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4

(Ĝp
0, Ĝ

p
1) (Gp

0,G
p
1)

where Gp
0 and Gp

1 are tight Gaussian processes with mean 0 with almost surely uniformly
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continuous paths on the space Y0t|Dt=1 × Yt|Dt=1 given by

Gp
1 = Vp

1

and

Gp
0 = Vp

0 +

∫ {
Wp

1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)− F p

∆Yt|Dt=1

(
y −

Wp
4 −Wp

3 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

fYt−1|Dt=1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

)

−Wp
2 ◦ F−1

∆Yt−1|Dt=1 ◦ F
p
∆Yt|Dt=1(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))
}
K(y, v) dFYt−2|Dt=1(v)

where

K(y, v) =
f∆Yt−1|Yt−2,Dt=1(F−1

∆Yt−1|Dt=1 ◦ F
p
∆Yt|Dt=1(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)))

f∆Yt−1|Dt=1 ◦ F−1
∆Yt−1|Dt=1 ◦ F

p
∆Yt|Dt=1 ◦ (y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))

Theorem 5. Suppose FY0t|Dt=1 admits a positive continuous density fY0t|Dt=1 on an inter-

val [a, b] containing an ε-enlargement of the set {F−1p
Y0t|Dt=1(τ) : τ ∈ T } in Y0t|Dt=1 with

T ⊂ (0, 1). Under the Conditional Distributional Difference in Differences Assumption, the

Copula Stability Assumption, and Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4

√
n( ˆQTT

p
(τ)−QTT p(τ)) Ḡp

1(τ)− Ḡp
0(τ)

where (Ḡp
0(τ), Ḡp

0(τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡp
0(τ) =

Gp
0(F−1

Y0t|Dt=1(τ))

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

and Ḡp
1(τ) =

Gp
1(F−1

Yt|Dt=1(τ))

fYt|Dt=1(F−1
Yt|Dt=1(τ))

Finally, we show that the empirical bootstrap can be used to construct asymptotically

valid confidence bands. The steps for the bootstrap are the same as in Algorithm 1 – only

the F∆Y0t|Dt=1(δ) should be calculated using the result on re-weighting rather than replacing

it directly with F∆Yt|Dt=0(δ). The same series terms used to estimate the propensity score

can be reused in each bootstrap iteration. Theorem 6 follows essentially using the same

arguments as in Chen, Linton, and Van Keilegom (2003).

Theorem 6. Under the Conditional Distributional Difference in Differences Assumption,

Copula Stability Assumption, and Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4,

√
n
(

ˆQTT
p∗

(τ)− ˆQTT
p
(τ)
)
 ∗ Ḡp

1(τ)− Ḡp
0(τ)
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where (Ḡp
0, Ḡ

p
1) are as in Theorem 5.

6 Comparison with Existing Methods

Our method is related to the work on quantile regression with panel data (Koenker 2004;

Abrevaya and Dahl 2008; Lamarche 2010; Canay 2011; Rosen 2012; Galvao, Lamarche, and

Lima 2013; Chen 2015) though our method is distinct in several ways. First, because we

do not impose a parametric model, our method allows for the effect of treatment to vary

across individuals with different covariates in an unspecified way. Second, our method is

consistent under fixed-T asymptotics while the papers mentioned above generally require

T → ∞.10 Third, we focus on an unconditional QTT whereas the quantile treatment

effects identified in these models are conditional – both on covariates and on unobserved

heterogeneity. This means that the results from our method should be interpreted in the same

way as the difference between treated and untreated quantiles if individuals were randomly

assigned to treatment. See Frolich and Melly (2013) for a good discussion of the difference

between conditional and unconditional quantile treatment effects. On the other hand, our

method only applies to the case where the researcher is interested only in the effect of a

binary treatment; quantile regression methods can can deliver estimates for multiple, possibly

continuous variables.

Because we focus on nonparametric identifying assumptions, the current paper is also

related to the literature on nonseparable panel data models (Altonji and Matzkin 2005;

Evdokimov 2010; Bester and Hansen 2012; Graham and Powell 2012; Hoderlein and White

2012; Chernozhukov, Fernandez-Val, Hahn, and Newey 2013). The most similar of these

is Chernozhukov, Fernandez-Val, Hahn, and Newey (2013) which considers a nonseparable

model and, similarly to our paper, obtains point identification for observations that are

observed in both treated and untreated states. Relative to Chernozhukov, Fernandez-Val,

Hahn, and Newey (2013), we exploit having access to a control group much more – their

approach either does not use the control group or uses it to adjust the mean and variance

only – and our setup is compatible with more complicated distributional shifts in outcomes

over time such as the top of the income distribution increasing more than the bottom of the

income distribution.

Perhaps the most similar work to ours is Athey and Imbens (2006). Their Change in

Changes model identifies the QTT for models that are monotone is a scalar unobservable.

10The two exceptions are Abrevaya and Dahl (2008) which uses a correlated random effects structure to
obtain identification without T →∞ and Rosen (2012) which deals with partial identification under quantile
restrictions.
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They assume that the distribution of unobservables does not change over time (though the

distribution of unobservables can be different for the treated group and untreated group) but

allow for the return to unobservables to change over time. However, even a mean Difference in

Differences Assumption does not hold in general in their model. Interestingly, one model that

satisfies the Change in Changes model and our setup is when untreated potential outcomes

at period s are generated by Y0is = Ci+Vis+θs for s = t, t−1, t−2 where Ci is an individual

specific fixed effect, θs is a time fixed effect and Vis is an idiosyncratic error term such that

Vs|C ∼ FV for all s.

7 Application

In this section, we use our method to study the effect of increasing the minimum wage on

county-level unemployment rates. There is a wide body of research that studies the effect of

the minimum wage on employment exploiting policy level changes across states (for example,

Neumark and Wascher (1992) and Dube, Lester, and Reich (2010), among many others). Like

most of the literature, we use variation in state-level changes in the minimum wage. Also,

we suppose that there may be time invariant differences in the unemployement rate across

counties that cannot be accounted for by observable differences in county characteristics.

This implies that a DID approach should be used and is in line with much of the literature

on minimum wage increases.

The aim of this section is different from most research on the effect of increasing the

minimum wage. The literature almost exclusively looks at the average effect, or the coefficient

in a linear regression model, of increasing the minimum wage on employment for teenagers,

restaurant workers, or some other subgroup. Instead, by looking at the QTE, we examine

how the effect of increasing the minimum wage varies by the strength of a county’s local labor

market. In other words, we ask the question: How does the effect of increasing the minimum

wage differ across counties that would have had relatively high (or low) unemployment rates

in the absence of the change in minimum wage policy? This goal is also different from trying

to understand the effect of minimum wage increases at different parts of the individual

income distribution as in Dube (2017).

Unlike most of the literature on minimum wages, instead of using a long panel of counties,

states, and many changes in minimum wage policy across states; we focus on a particular

period where the federal minimum wage was flat while there is variation in state minimum

wages. The U.S. federal minimum wage increased from $4.25 to $5.15 between 1996 and

1997. It did not increase again until the Fair Minimum Wage Act was proposed on January

5, 2007 and enacted on May 25, 2007. The Act increased the federal minimum wage to $5.85
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on July 24, 2007 and increased the minimum wage in two more increments, settling at $7.25

in July of 2009.

In 2006, there were 33 states for whom the federal minimum wage was the binding

minimum wage in the state. Of these, we drop two states – New Hampshire and Pennsylvania

– because they are located in the Northern census region; census region is known to be an

important control in the minimum wage literature (Dube, Lester, and Reich 2010) and

almost all states in the Northern census region had minimum wages higher than the federal

minimum wage by 2006. Of the remaining states, 11 increased their minimum wage by the

first quarter of 2007 while 20 did not increase their minimum wage until the federal minimum

wage increased in July of 2007. 11

County level unemployment rates are the outcome variable. We obtain these from the

Local Area Unemployment Statistics Database from the Bureau of Labor Statistics. Unem-

ployment rates are available monthly and we use unemployment rates in February as the

outcome variable. We choose February instead of January because it does not overlap with

the holidays and choose it over later months because it is further away from the federal min-

imum wage change in July. We also merge in county characteristics from the 2000 County

Data Book. In our application, these include 2000 county population and 1997 county me-

dian income. We collected data for each year from 2000-2007. Our method requires three

periods of data, but the earlier periods allow us to pre-test our model in earlier periods.

Table 1 provides summary statistics. From 2005-2007, the level of unemployment rates is

higher for treated counties than for untreated counties. The gap narrows from 2005 to 2006,

the period before any counties have increased minimum wages, and then expands again from

2006 to 2007; this may provide some suggestive evidence that the minimum wage is inreasing

unemployment rates on average. Counties that are treated are also different from untreated

counties in terms of their observable characteristics. Treated counties are more likely to be

in the West and North-Central regions while untreated counties are more likely to be in the

South. Median incomes are very similar (though statistically different) across treated and

untreated counties. And treated counties tend to be more populated; log population of 10.34

for treated counties is almost 31,000 while log population of 9.91 for untreated counties is

just over 20,000.

The main results from using our method are presented in Figure 1. The upper panel pro-

vides estimates without conditioning on covariates. The lower panel provides estimates that

11The states that increased their minimum wage were: Arizona, Arkansas, Colorado, Maryland, Michigan,
Montana, Nevada, North Carolina, Ohio, and West Virginia. The states that did not increase their minimum
wage were: Alabama, Georgia, Idaha, Indiana, Iowa, Kansas, Kentucky, Louisiana, Mississippi, Nebraska,
New Mexico, North Dakota, Oklahoma, South Carolina, South Dakota, Tennessee, Texas, Utah, Virginia,
and Wyoming
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condition on county characteristics; the specification for the propensity score interacts region

with quadratic terms in log median income and log population as well as their interaction.

The results are very similar whether or not covariates are included.

On average, we find that the effect of increasing the minimum wage has a small posi-

tive effect on the unemployment rate. Both with and without covariates, we estimate that

increasing the minimum wage increases the unemployment rate by 0.12 percentage points.

Without covariates, the effect is statistically significant. With covariates, the effect is not

statistically significant. However, there is much heterogeneity. At the low end of the unem-

ployment rate distribution, the effect of increasing the minimum wage on the unemployment

rate appears to be negative. For example, at the 10th percentile, the unemployment rate is

estimated to be 0.44 (p-value: 0.000) percentage points lower following the minimum wage

increase than it would have been without the minimum wage increase (with covariates the

estimate is 0.45 (p-value: 0.008)). However, in the middle and upper parts of the unem-

ployment rate distibution, increasing the minimum wage appears to increase unemployment.

The difference between the medians of unemployment rates in the presence or absence of

the minimum wage increase is 0.31 (p-value: 0.000) percentage points (with covariates the

estimate is 0.32 (p-value: 0.029)). The estimated difference between the 90th percentiles is

0.36 (p-value: 0.029) percentage points (with covariates the estimate is 0.27 (p-value: 0.216).

For comparison, Figure 3 plots bounds on the QTT when no assumption is made about

the copula between the change in untreated potential outcomes and the initial level of un-

treated potential outcomes for the treated group as in Fan and Yu (2012). These bounds are

very wide. For example, the difference between the median unemployment rate for treated

counties and their counterfactual unemployment rate is bounded between -1.01 and 1.41.

Neither our Distributional Difference in Differences Assumption nor the Copula Stability

Assumption are directly testable, but, like existing Difference in Differences methods, our

assumptions can be pre-tested when additional pre-treatment periods are available. The

simplest way to implement a pre-test is to estimate the model in the period (or periods)

before treatment and test that the QTT is 0 for all values of τ . Also, because our Copula

Stability Assumption is new, we provide an additional test for only the CSA. The idea of

this test is to compute Kendall’s Tau (a standard dependence measure that depends only

on the copula (see Nelsen (2007))) in each pre-treatment year and test whether or not it

changes over time. We perform both of these tests on the minimum wage data next.

Figure 2 plots Kendall’s Tau for the change in unemployment rates and the initial level of

unemployment rates for treated counties from 2001 to 2006. Kendall’s Tau varies very little

over this period and is always somewhat less than 0 indicating slight negative dependence

between the change and initial level of unemployment. A Wald test fails to reject the
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equality of Kendall’s Tau in all periods (p-value: 0.524). Second, we compute QTTs in each

pre-treatment period from 2002 to 2006. In these periods, the QTTs should be equal to

0 everywhere. These are available in Supplementary Appendix Figure 2 and our method

tends to perform very well in the earlier periods. Finally, as an additional robustness check,

we compute QTTs using the Change in Changes method with and without covariates and

with the Quantile Difference in Differences method (these are available in Supplementary

Appendix Figure 1). These other methods show very similar patterns as our main results.

Taken together, these results suggest that there is a great deal of heterogeneity of the

effect of increasing the minimum wage across local labor markets. If we impose the additional

assumption that counties maintain their rank in the distribution of unemployment when

the minimimum wage increases, the results indicate that counties with tight labor markets

experience decreases in unemployment while counties that with high unemployment see fairly

large increases in unemployment. Even in the absence of such an assumption, our results

indicate that increasing the minimum wage can have negative consequences for some loal

labor markets although the average effect may be fairly small.

8 Conclusion

This paper has considered identification and estimation of the QTT under a distributional

extension of the most common Mean Difference in Differences Assumption used to identify

the ATT. Even under this Distributional Difference in Differences Assumption, the QTT is

still only partially identified because it depends on the unknown dependence between the

change in untreated potential outcomes and the initial level of untreated potential outcomes

for the treated group. We introduced the Copula Stability Assumption which says that the

missing dependence is constant over time. Under this assumption and when panel data is

available, the QTT is point identified. We show that the Copula Stability Assumption is

likely to hold in exactly the type of models that are typically estimated using Difference in

Differences techniques.

In many applications it is important to invoke identifying assumptions that hold only

after conditioning on some covariates. We developed simple estimators of the QTT using

propensity score re-weighting. In an application where we compare the results using several

available methods to estimate the QTT on observational data to results obtained from an

experiment, we find that our method performs at least as well as other available methods.

In ongoing work, we are using similar ideas about the time invariance of a copula function

to study the joint distribution of treated and untreated potential outcomes when panel data

is available. Also, we are working on using the same type of assumption to identify the QTT
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in more complicated situations such as when outcomes are censored or in dynamic panel

data models. The idea of a time invariant copula may also be valuable in other areas of

microeconometric research especially when a researcher has access to panel data.
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A Identification and Estimation under a Conditional

CSA

Our main results dealt with the case where the Distributional Difference in Differences
Assumption held conditional on covariates, but the Copula Stability Assumption held un-
conditionally. We showed that this combination of assumptions is likely to hold in the most
common type of model where empirical researchers use Difference in Differences to identify
the ATT. We also provided some empirical evidence in favor of the Unconditional Copula
Stability Assumption.

However, in some applications, a researcher may wish to make the Copula Stability
Assumption hold after conditioning on covariates. This assumption says that the copula be-
tween the change in untreated potential outcomes and the initial level of untreated potential
outcomes does not change over time after conditioning on some covariates X.

Conditional Copula Stability Assumption.

C∆Y0t,Y0t−1|X,Dt=1(·, ·|x) = C∆Y0t−1,Y0t−2|X,Dt=1(·, ·|x)

Importantly, the QTT continues to be identified under the Conditional Copula Stability
Assumption.

Proposition 5. Assume that, for all x ∈ X , ∆Yt for the untreated group, ∆Yt−1, Yt−1,
and Yt−2 for the treated group are continuously distributed conditional on x. Under the
Conditional Distributional Difference in Differences Assumption, the Conditional Copula
Stability Assumption, and Assumption 3.3

P(Y0t ≤ y|X = x,Dt = 1)

= E
[
1{F−1

∆Y0t|X,Dt=0(F∆Y0t−1|X,Dt=1(∆Y0t−1|x))

≤ y − F−1
Y0t−1|X,Dt=1(FY0t−2|X,Dt=1(Y0t−2|x))}|X = x,Dt = 1

]
and

QTT(τ ;x) = F−1
Y1t|X,Dt=1(τ |x)− F−1

Y0t|X,Dt=1(τ |x)

which is identified, and

P(Y0t ≤ y|Dt = 1) =

∫
X

P(Y0t ≤ y|X = x,Dt = 1) dF(x|Dt = 1)

and

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified.
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There are several advantages to this approach. First, under the Conditional Copula
Stability Assumption, the path of untreated potential outcomes can depend on the covariates.
This could be important in applications where the return to some covariate – for example, the
return to education – changes over time. Conditional Difference in Differences assumptions
for the ATT (Heckman, Ichimura, Smith, and Todd 1998; Abadie 2005) allow for this pattern.
Second, under the Conditional Copula Stability Assumption, it is possible to allow for time
varying covariates; however, the effect of time varying covariates must be a location-shift.
Finally, under the Conditional Copula Stability Assumption, one can obtain estimates of
conditional quantile treatment effects.

On the other hand, there are some costs associated with the Conditional Copula Stabil-
ity Assumption. Primarily, estimation becomes potentially much more challenging. Non-
parametric estimation would require estimating five conditional distribution functions and
conditional quantile functions which is likely to be quite challenging in practice. One could
replace nonparametric estimation by assuming a parametric model for each conditional quan-
tile function though parametric assumptions are unattractive in our model because it is not
clear how misspecification in any of the first step conditional distribution/quantile functions
would affect our estimates of the QTT.

In ongoing work (Callaway, Li, and Oka 2016), we consider a conditional copula assump-
tion in a related model. Those results are likely to go through with minor adaptations to the
current model. Melly and Santangelo (2015) use parametric quantile regressions to estimate
a conditional version of the Change in Changes model (Athey and Imbens 2006); Wuthrich
(2015) uses a similar approach to estimate quantile treatment effects with endogeneity. One
could also adapt those types of results to our setup in a straightforward way.

B Proofs

B.1 Identification

B.1.1 Identification without covariates

In this section, we prove Theorem 1. Namely, we show that the counterfactual distribution
of untreated outcome FY0t|Dt=1(y) is identified. First, we state two well known results without
proof used below that come directly from Sklar’s Theorem.

Lemma B.1. The joint density in terms of the copula pdf

f(x, y) = c(FX(x), FY (y))fX(x)fY (y)

Lemma B.2. The copula pdf in terms of the joint density

c(u, v) = f(F−1
X (u), F−1

Y (u))
1

fX(F−1
X (u))

1

fY (F−1
Y (u))

Proof of Theorem 1. To minimize notation, let ft(·, ·) = f∆Y0t,Y0t−1|Dt=1(·, ·) be the joint pdf
of the change in untreated potential outcome and the initial untreated potential outcome for
the treated group, and let ft−1(·, ·) = f∆Y0t−1,Y0t−2|Dt=1(·, ·) be the joint pdf in the previous
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period. Similarly, let ct(·, ·) = c∆Y0t,Y0t−1|Dt=1(·, ·) and ct−1(·, ·) = c∆Y0t−1,Y0t−2|Dt=1(·, ·) be the
copula pdfs for the change in untreated potential outcomes and initial level of untreated
outcomes for the treated group at period t and t − 1, respectively. And, finally, let ∆Y =
∆Yt|Dt=1 (the support of the change in untreated potential outcomes for the treated group)
and Y = Yt−1|Dt=1 (the support of outcomes for the treated group in period t− 1). Then,

P (Y0t ≤ y|Dt = 1)

= P (∆Y0t + Y0t−1 ≤ y|Dt = 1)

= E[1{∆Y0t ≤ y − Y0t−1}|Dt = 1]

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}ft(δ, y′) dδ dy′

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}ct(F∆Y0t|Dt=1(δ), FY0t−1|Dt=1(y′))f∆Y0t|Dt=1(δ)fY0t−1|Dt=1(y′) dδ dy′

(5)

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}ct−1(F∆Y0t|Dt=1(δ), FY0t−1|Dt=1(y′))f∆Y0t|Dt=1(δ)fY0t−1|Dt=1(y′) dδ dy′

(6)

=

∫
Y

∫
∆Y

1{δ ≤ y − y′}ft−1

(
F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(δ)), F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′))

)
×

f∆Y0t|Dt=1(δ)

f∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(δ)))

×
fY0t−1|Dt=1(y′)

fY0t−2|Dt=1(F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y′)))

dδ dy′

(7)

Equation 5 rewrites the joint distribution in terms of the copula pdf using Lemma B.1;
Equation 6 uses the copula stability assumption; Equation 7 rewrites the copula pdf as the
joint distribution (now in period t− 1) using Lemma B.2.

Now, make a change of variables: u = F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(δ)) and v = F−1

Y0t−2|Dt=1(FY0t−1|Dt=1(y′)).
This implies the following:

1. δ = F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u))

2. y′ = F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v))

3. dδ =
f∆Y0t−1|Dt=1(u)

f∆Y0t|Dt=1(F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)))

du

4. dy′ =
fY0t−2|Dt=1(v)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v)))

dv
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Plugging in (1)-(4) in Equation 7 and noticing that the substitutions for dδ and dy′ cancel
out the fractional terms in the third and fourth lines of Equation 7 implies

Equation 7 =

∫
Yt−2|Dt=1

∫
∆Yt−1|Dt=1

1{F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)) ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(v))}

(8)

× ft−1 (u, v) dudv

= E
[
1{F−1

∆Y0t|Dt=1(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(9)

= E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(10)

where Equation 8 follows from the discussion above, Equation 9 follows by the definition
of expectation, and Equation 10 follows from the Distributional Difference in Differences
Assumption.

B.1.2 Identification with covariates

In this section, we prove Theorem 2.

Proof. All of the results from the proof of Theorem 1 are still valid. Therefore, all that needs
to be shown is that Equation 4 holds. Notice,

P(∆Y0t ≤ δ|Dt = 1) =
P(∆Y0t ≤ δ,Dt = 1)

p

= E

[
P(∆Y0t ≤ δ,Dt = 1|X)

p

]

= E

[
p(X)

p
P(∆Y0t ≤ δ|X,Dt = 1)

]

= E

[
p(X)

p
P(∆Y0t ≤ δ|X,Dt = 0)

]
(11)

= E

[
p(X)

p
E[(1−Dt)1{∆Yt ≤ δ)}|X,Dt = 0]

]
(12)

= E

[
p(X)

p(1− p(X))
E[(1−Dt)1{∆Yt ≤ δ)}|X]

]

= E

[
1−Dt

1− p(X)

p(X)

p
1{∆Yt ≤ δ}

]
(13)
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where Equation 11 holds by Conditional Distributional Difference in Differences Assumption.
Equation 12 holds by replacing P (·) with E(1{·}) and then multiplying by (1 −Dt) which
is permitted because the expectation conditions on Dt = 0. Additionally, conditioning on
Dt = 0 allows us to replace the potential outcome ∆Y0t with the actual outcome ∆Yt because
∆Yt is the observed change in potential untreated outcomes for the untreated group. Finally,
Equation 13 simply applies the Law of Iterated Expectations to conclude the proof.

B.2 Proof of the results in Example 1

For the first part, notice that ∆Y0it = θt − θt−1 + ∆vit. This has the same distribution
for the treated group and untreated group under Condition (i).

For the second part, first note that,

F∆Y0t|Dt=1(δ) = P (∆Y0t ≤ δ|Dt = 1)

= P (∆vit ≤ δ − (θt − θt−1)|Dt = 1)

= P (∆vit−1 ≤ δ − (θt − θt−1)|Dt = 1)

= P (∆Y0t−1 ≤ δ − (θt − θt−2)|Dt = 1)

= F∆Y0t−1|Dt=1(δ − (θt − θt−2)|Dt = 1)

where the third equality holds by Condition (ii) and the Law of Iterated Expectations.
Similarly,

FY0t−1|Dt=1(y) = P (Y0t−1 ≤ y|Dt = 1)

= P (Ci + vit−1 ≤ y − θt−1|Dt = 1)

= P (Ci + vit−2 ≤ y − θt−1|Dt = 1)

= P (Y0t−2 ≤ y − (θt−1 − θt−2)|Dt = 1)

= FY0t−2|Dt=1(y − (θt−1 − θt−2))

where the third equality holds by Condition (ii). Finally, consider

C∆Y0t,Y0t−1|Dt=1(u, v)

= P (F∆Y0t|Dt=1(∆Y0t) ≤ u, FY0t−1|Dt=1(Y0t−1) ≤ v|Dt = 1)

= P (F∆Y0t−1|Dt=1(∆Y0t − (θt − θt−2)) ≤ u, FY0t−2|Dt=1(Y0t−1 − (θt−1 − θt−2)) ≤ v|Dt = 1)

= P (F∆Y0t−1|Dt=1(∆vt − (θt−1 − θt−2)) ≤ u, FY0t−2|Dt=1(C + vt−1 + θt−2) ≤ v|Dt = 1)

= P (F∆Y0t−1|Dt=1(∆vt−1 − (θt−1 − θt−2)) ≤ u, FY0t−2|Dt=1(C + vt−2 + θt−2) ≤ v|Dt = 1)

= P (F∆Y0t−1|Dt=1(∆Y0t−1) ≤ u, FY0t−2|Dt=1(Y0t−2) ≤ v|Dt = 1)

= C∆Y0t−1,Y0t−2|Dt=1(u, v)

which proves the result. Condition (ii) implies that the joint distribution of (vit, vit−1, Ci) is
the same as the joint distribution of (vit−1, vit−2, Ci) which implies the result in the fourth
equality.
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B.3 Proof of the results in Example 2

The nonseparable model Yit = q(Uit, Xi, Dit) + Ci can be equivalently written in terms
of potential outcomes:

Y1it = q1(Uit, Xi) + Ci

Y0it = q0(Uit, Xi) + Ci

Unconditional Mean Difference in Differences Holds

E[Y0t|D = d] =

∫
q0(u, x) + c dFUt,X,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt dFX,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt−1 dFX,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt−1,X,C|D=d(u, x, c)

= E[Y0t−1|D = d]

which implies that for the treated group and untreated group the average change in untreated
potential outcomes is 0.

Conditional Difference in Differences Holds

P(∆Y0t ≤ δ|X = x,D = 1) =

∫
1{q0(u, x)− q0(ũ, x) ≤ δ} dFUt,Ut−1|X,D=1(u, ũ)

=

∫
1{q0(u, x)− q0(ũ, x) ≤ δ} dFUt,Ut−1|X,D=0(u, ũ)

= P(∆Y0t ≤ δ|X = x,D = 0)

where the second equality holds because (Ut, Ut−1) ⊥⊥ (X,D).

Unconditional Distributional Difference in Differences Does Not Hold

P(∆Y0t ≤ δ|D = 1) = E[P(∆Y0t ≤ δ|X,D = 1)|D = 1]

= E[P(∆Y0t ≤ δ|X,D = 0)|D = 1]

where the second equality holds by the result for the Conditional Distributional Difference
in Differences Assumption holding. The last quantity is, in general, not equal to P(∆Y0t ≤
δ|D = 0) because the distribution of X can be different across the two groups.
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Unconditional Copula Stability Holds

P(∆Y0t ≤ δ, Y0t−1 ≤ y|D = 1) = P(q0(Uit, Xi)− q0(Uit−1, Xi) ≤ δ, q0(Uit−1, Xi) ≤ y|D = 1)

= P(q0(Uit−1, Xi)− q0(Uit−2, Xi) ≤ δ, q0(Uit−2, Xi) ≤ y|D = 1)

= P(∆Y0t−1 ≤ δ, Y0t−2 ≤ y|D = 1)

which implies that the CSA holds.

B.4 Asymptotic Normality

In this section, we derive the asymptotic distribution of our estimator of the QTT.
First, we introduce some notation. First, to conserve on notation, let F∆t = F∆Yt|Dt=0,
F∆t−1 = F∆Yt−1|Dt=1, FYt−1 = FYt−1|Dt=1, and FYt−2 = FYt−2|Dt=1. Let

φn(F ) =
1

nT

∑
i∈T

1{F−1
∆t(F∆t−1(∆Yit−1)) ≤ y − F−1

Yt−1
(FYt−2(Yit−2))}

and

φ0(F ) = E
[
1{F−1

∆t(F∆t−1(∆Yt−1)) ≤ y − F−1
Yt−1

(FYt−2(Yt−2))}
∣∣∣Dt = 1

]
Let F0 = (F10, F20, F30, F40) where Fj0, for j = 1, . . . , 4, are distribution functions; we

assume that F10 and F20 have common, compact support U ⊂ R and that F30 and F40 have
common, compact support V ⊂ R. We also suppose that each Fj0 has a density function
fj0 that are uniformly bounded away from 0 and ∞ on their supports. Let (U2, V4) be two
random variables on U × V with joint distribution FU2,V4 . We assume that U2 ∼ F20 and
that V4 ∼ F40 and that the conditional distribution FU2|V4 has a continuous density function
fU2|V4 that is uniformly bounded from 0 and ∞. As a first step, we establish the Hadamard
Differentiability of φ0(F ). We do this in several steps. First, we use the following result due
to Callaway, Li, and Oka (2016)

Lemma B.3. Let D = C(V)2 and define the map Ψ : DΨ ⊂ D 7→ l∞(V) as

Ψ(F ) ≡ F−1
3 ◦ F4

where DΨ ≡ E × E where E is the set of all distribution functions with strictly positive,
bounded densities. Then, the map Ψ is Hadamard Differentiable at (F30, F40) tangentially to
D with derivative at (F30, F40) in ψ ≡ (ψ1, ψ2) ∈ D

Ψ′(F30,F40)(ψ) =
γ2 − γ1 ◦ F−1

30 ◦ F40

f30 ◦ F−1
30 ◦ F40

Lemma B.4. Let A = C(U)× l∞(V). Define the map Λ : AΛ 7→ E where E is the set of all
distribution functions with strictly positive, bounded densities and with AΛ ≡ E× DΨ where
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DΨ is given in Lemma B.3, given by

Λ(Γ)(y) = Γ1(y − Γ2)

Then, the map Λ is Hadamard differentiable at (F10, F
−1
30 ◦F40) tangentially to A with deriva-

tive in α ≡ (α1, α2) ∈ A given by

Λ′
(F10,F

−1
30 ◦F40)

(α)(y) = α1 ◦ F−1
30 ◦ F40 + F10(y − α2)

Proof. Let Λ1 : AΛ 7→ AΛ given by Λ1(Ξ) = (Ξ1, · − Ξ2). Lemma 3.9.25 of Van Der Vaart
and Wellner (1996) implies that the map Λ1 is Hadamard differentiable at Ξ tangentially to
A with derivative in ξ = (ξ1, ξ2) ∈ A given by

Λ′1,Ξ(ξ) = (ξ1,−ξ2)

Let Λ2 : AΛ 7→ E given by Λ2(Υ) = Υ1 ◦ Υ2. Lemma 3.9.27 of Van Der Vaart and Wellner
(1996) implies that Λ2 is Hadamard differentiable at Υ tangentially to A with derivative at
Υ in υ = (υ1, υ2) ∈ A given by

Λ′2,Υ(υ) = υ1 ◦Υ2 + Υ′1,Υ2
◦ υ2

By the chain rule for Hadamard differentiable maps

Λ′
(F10,F

−1
30 ◦F40)

(α) = Λ′
2,(F10,F

−1
30 ◦F40)

◦ Λ′
1,(F10,F

−1
30 ◦F40)

(α)

for α ∈ A.

Lemma B.5. Let B = C(U)2. Define the map Φ : BΦ ⊂ B 7→ l∞(U) with DΦ := E × DΛ

given by

Φ(Ω) = Ω−1
1 ◦ Ω2

Then, the map Φ is Hadamard differentiable at (F20, F10(· − F−1
30 ◦ F40)) tangentially to B

with derivative at (F20, F10(· − F−1
30 ◦ F40)) in ω := (ω1, ω2) ∈ B given by

Φ′
(F20,F10(·−F−1

30 ◦F40))
(ω) =

ω2 − ω1 ◦ F−1
20 ◦ F10 ◦ (· − F−1

30 ◦ F40)

f20 ◦ F−1
20 ◦ F10 ◦ (· − F−1

30 ◦ F40)

Proof. The proof follows by the same argument as in Lemma B.3.

Lemma B.6. Let D = C(U)2 × C(V)2 and let Y be a compact subset of R. Let φ : Dφ ⊂
D 7→ l∞(Y) be given by

φ(F )(y) = P(F−1
1 (F2(V2)) + F−1

3 (F4(V4)) ≤ y)

for F = (F1, F2, F3, F4) ∈ Dφ where Dφ = E4 where E is the set of all distribution functions
with strictly positive and bounded densities. Then, the map φ is Hadamard Differentiable at
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F0 tangentially to D with derivative in γ = (γ1, γ2, γ3, γ4) ∈ D given by

φ′F0
(γ)(y) = π′

F−1
20 ◦F10(y−F−1

30 ◦F40)
◦ Φ′

(F20,F10(y−F−1
30 ◦F40))

(γ2,Λ
′
(F10,F

−1
30 ◦F40)

(γ1,Ψ
′
(F30,F40)(γ3, γ4))

Proof. First, notice that

φ(F )(y) = P(V2 ≤ F−1
2 ◦ F1(y − F−1

3 ◦ F4(V4)))

= P(V2 ≤ Φ(F2,Λ(F1,Ψ(F3, F4)(V4)(y)))

Define the map π : Dπ 7→ l∞(Y) where Dπ is the set of all functions F−1
2 (F1(· − F−1

3 (F4)))
for (F1, F

−1
2 , F−1

3 , F4) ∈ E× E− × E− × E as

π(χ)(y) =

∫
FV2|V4(χ(v4)(y)|v4) dFV4(v4)

Then, for F ∈ D and y ∈ Y , φ = π ◦ Φ ◦ Λ ◦Ψ
Using the same arguments as in Callaway, Li, and Oka (2016, Lemma A2), π is Hadamard

differentiable at χ ∈ Dπ tangentially to D with derivative at χ in ζ ∈ D given by

π′χ(ζ)(y) =

∫
ζ(v4)fV2|V4(χ(v4)|v4) dFV4(v4) (14)

By the chain rule for Hadamard differentiable functions (cf. Van Der Vaart and Wellner
(1996, Lemma 3.9.3)),

φ′F0
(γ) = π′

F−1
20 ◦F10(·−F−1

30 ◦F40)
◦ Φ′

(F20,F10(·−F−1
30 ◦F40))

(γ2,Λ
′
(F10,F

−1
30 ◦F40)

(γ1,Ψ
′
(F30,F40)(γ3, γ4))

Plugging in the results from Lemmas B.3 to B.5 and Equation (14) implies

φ′F0
(γ) =

∫ γ1 ◦ F−1
30 ◦ F40(v4)− F10

(
· − γ4−γ3◦F−1

30 ◦F40(v4)

f30◦F−1
30 ◦F40(v4)

)
− γ2 ◦ F−1

20 ◦ F10(y − F−1
30 ◦ F40(v4))

f20 ◦ F−1
20 ◦ F10 ◦ (y − F−1

30 ◦ F40(v4))

× fV2|V4(F−1
20 ◦ F10(· − F−1

30 ◦ F40(v4)) dFV4(v4)

Next, let

vn(F ) =
√
n(φn(F )− φ0(F ))

Lemma B.7.

sup
y∈Y
|vn(F̂ )(y)− vn(F0)(y)| p−→ 0

Proof. Because Y is a compact set, we can show that |vn(F̂ )(y) − vn(F̂ )(y)| p−→ 0 for all
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y ∈ Y . Notice that, for any y ∈ Y ,

vn(F̂)(y)− vn(F0)(y) =
√
n(φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y))

−
√
n(φn(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y))

Then, adding and subtracting the following terms:

φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

implies

vn(F̂)(y)− vn(F0)(y)

=
√
n
{
φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
(15)

+
√
n
{
φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
(16)

+
√
n
{
φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

−
(
φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

)}
(17)

+
√
n
{
φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)

−
(
φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)

)}
(18)

Each of the above terms converges to 0. We show below that this holds for Equation 15
while omitting the proof for the other terms – the arguments are essentially identical for
each one.

Proof.

√
n
{
φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
=
√
n

{(
1

n

n∑
i=1

1{F̂−1
1 (F̂2(V1i)) ≤ y − F̂−1

3 (F̂4(V2i))} −
1

n

n∑
i=1

1{F−1
1 (F̂2(V1)) ≤ y − F̂−1

3 (F̂4(V2i))}

)
−
(

E
[
1{F̂−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
− E

[
1{F−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

])}
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To show the result for Equation 15, Lemmas B.8.A, B.8.B and B.17 show that, for any y ∈
Y ,
√
n(φn(F̂1, F̂2, F̂3, F̂4)− φn(F1, F̂2, F̂3, F̂4)) and

√
n(φ0(F̂1, F̂2, F̂3, F̂4)− φ0(F1, F̂2, F̂3, F̂4))

are asymptotically equivalent which implies the result.

Lemma B.8.A. Let µ̂(y) = 1
nT

∑
i∈T F̂∆t(y−F−1

Yt−1
(FYt−2(Yit−2)))−F∆t(y−F−1

Yt−1
(FYt−2(Yit−2))).

Then, for all y ∈ Y
√
n
(
φn(F̂1, F̂2, F̂3, F̂4)(y)− φn(F1, F̂2, F̂3, F̂4)(y)− µ̂(y)

)
= op(1)

Proof.

√
n
(
φn(F̂1, F̂2, F̂3, F̂4)(y)− φn(F1, F̂2, F̂3, F̂4)(y)− µ̂(y)

)
=
√
n

{
1

n

n∑
i=1

[
1{F̂−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(V2i))} − 1{F−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(V2i))}

−
(
F̂1(y − F−1

3 (F4(V2i)))]− F1(y − F−1
3 (F4(V2i)))

)]}
≤ sup

v∈V2

√
n

∣∣∣∣∣ 1n
n∑
i=1

[
1{F̂−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(v2))} − 1{F−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(v2))}

−
(
F̂1(y − F−1

3 (F4(v2)))]− F1(y − F−1
3 (F4(v2)))

)]∣∣∣
= sup

v∈V2

√
n

∣∣∣∣∣ 1n
n∑
i=1

[
1{V1i ≤ F̂−1

2 (F̂1(y − F̂−1
3 (F̂4(v2))))} − 1{V1i ≤ F̂−1

2 (F1(y − F̂−1
3 (F̂4(v2))))}

−
(
F̂1(y − F−1

3 (F4(v2)))]− F1(y − F−1
3 (F4(v2)))

)]∣∣∣+ op(1)

= sup
v∈V2

√
n
∣∣∣F̂1(y − F̂−1

3 (F̂4(v2)))− F1(y − F̂−1
3 (F̂4(v2)))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)∣∣∣+ op(1)

= op(1)

Lemma B.8.B. Let µ(y) = E[F̂1(y−F−1
3 (F4(V2)))]−E[F1(y−F−1

3 (F4(V2)))]. Then, for all
y ∈ Y,

√
n
(
φ0(F̂1, F̂2, F̂3, F̂4)(y)− φ0(F1, F̂2, F̂3, F̂4)(y)− µ(y)

)
= op(1)
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Proof.

√
n
(
φ0(F̂1, F̂2, F̂3, F̂4)(y)− φ0(F1, F̂2, F̂3, F̂4)(y)− µ(y)

)
=
√
n
{

E
[
1{F̂−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
− E

[
1{F−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
−
(

E[F̂1(y − F−1
3 (F4(V2)))]− E[F1(y − F−1

3 (F4(V2)))]
)}

=
√
n
{

E
[
1{V1 ≤ F̂−1

2 (F̂1(y − F̂−1
3 (F̂4(V2))))}

]
− E

[
1{V1 ≤ F̂−1

2 (F1(y − F̂−1
3 (F̂4(V2))))}

]
−
(

E[F̂1(y − F−1
3 (F4(V2)))]− E[F1(y − F−1

3 (F4(V2)))]
)}

+ op(1)

≤ sup
v2∈V2

|F2(F̂−1
2 (F̂1(y − F̂−1

3 (F̂4(v2)))))− F2(F̂−1
2 (F̂1(y − F̂−1

3 (F̂4(v2)))))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)
+ op(1)

= sup
v2∈V2

|F̂1(y − F̂−1
3 (F̂4(v2)))− F̂1(y − F̂−1

3 (F̂4(v2)))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)
+ op(1)

= op(1)

Proof of Proposition 2 First, notice that

√
n(F̂Y0t|D=1(y)− FY0t|D=1(y)) =

√
n(φn(F̂ )− φ0(F0))

=
√
n(φn(F̂ )− φ0(F̂ ))−

√
n(φ0(F̂ )− φ0(F0))

=
√
n(φn(F0)− φ0(F0))− φ′F0

√
n(F̂ − F0) + op(1)

where the last equality holds by Lemmas B.6 and B.7. Then, the result holds by Proposition 1
and an application of the functional central limit theorem.

Proof of Theorem 3 Under the conditions stated in Theorem 3, the result follows from
the Hadamard differentiability of the quantile map (Van Der Vaart and Wellner 1996, Lemma
3.9.23(ii)) and by Proposition 2.

Proof of Theorem 4 The result holds because our estimate of the QTT is Donsker and
by Theorem 3.6.1 in Van Der Vaart and Wellner (1996).

Asymptotic Normality of the propensity score reweighted estimator Let F0 =

(F̃∆Y0t|Dt=1, F∆Y0t−1|Dt=1, FY0t−1|Dt=1, FY0t−2|Dt=1) and F̂ = ( ˆ̃F∆Y0t|Dt=1, F̂∆Y0t−1|Dt=1, F̂Y0t−1|Dt=1, F̂Y0t−2|Dt=1).
For W = (D,X,∆Y ), let

ϕ(W, δ) =
1{∆Y ≤ δ|X}
p(1− p0(X))

(D − p0(X)) +
1−D
p

p0(X)

1− p0(X)
1{∆Yt ≤ δ}
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Lemma B.9. Let K = {ϕ(W, δ)|δ ∈ ∆Y}. K is a Donsker class.

Proof. Let K1 = {1{∆Y≤δ|X}
p(1−p0(X))

(D − p0(X))|δ ∈ ∆Y}. K1 is Donsker by Donald and Hsu

(2014, Lemma A.2). Let K2 = {1−D
p

p0(X)
1−p0(X)

1{∆Yt ≤ δ}|δ ∈ ∆Y}. K2 is Donsker because

1{∆Yt ≤ δ}|δ ∈ ∆Y} is Donsker, and 1−D
p

p0(X)
1−p0(X)

is a uniformly bounded and measurable

function so that we can apply Van Der Vaart and Wellner (1996, Example 2.10.10). Then,
the result holds by Van Der Vaart and Wellner (1996, Example 2.10.7).

Lemma B.10. Let F∆Y0t|Dt=1(δ, p̄) = E
[

1−Dt

p
p̄(X)

1−p̄(X)
1{∆Yt ≤ δ}

]
denote the propensity score

reweighted distribution of the change in untreated potential outcomes for the treated group
for a particular propensity score p̄. Then, the pathwise derivative Γ(p0)(p̂− p0) exists and is
given by

Γ(δ, p0)(p̂− p0) = E

[
1−Dt

p

1{∆Yt ≤ δ}
(1− p0(X))2

(p̂(X)− p0(X))

]
Proof.

F∆Y0t|Dt=1(δ, p0 + t(p̄− p0))− F∆Y0t|Dt=1(δ, p0)

t

= E

[
1−Dt

p
1{∆Yt ≤ δ}

(
p0(X) + t(p̄(X)− p0(X))

1− p0(X)− t(p̄(X)− p0(X))
− p0(X)

1− p0(X)

)]/
t

= E

[
1−Dt

p
1{∆Yt ≤ δ} (p̄(X)− p0(X))

(1− p0(X))2 − t(p̄(X)− p0(X)) + p0(X)t(p̄(X)− p0(X))

]
→ E

[
1−Dt

p
1{∆Yt ≤ δ}(p̄(X)− p0(X))

(1− p0(X))2

]
as t→ 0

Lemma B.11. Under the Conditional Distributional Difference in Differences Assumption,
the Copula Stability Assumption, Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4,

√
n|F∆Y0t|Dt=1(δ, p̂)− F∆Y0t|Dt=1(δ, p0)− Γ(δ, p0)(p̂− p0)|∞ = op(1)

Proof.

√
n|F∆Y0t|Dt=1(δ, p̂)− F∆Y0t|Dt=1(δ, p0)− Γ(δ, p0)(p̂− p0)|∞

≤
√
n

∣∣∣∣E [1−Dt

p

(
p̂(X)

1− p̂(X)
− p0(X)

1− p0(X)
− (p̂(X)− p0(X)

(1− p0(X))2

)]∣∣∣∣
=
√
n

∣∣∣∣E [1−Dt

p

(
(p̂(X)− p0(X))2

(1− p̂(X))(1− p0(X))2

)]∣∣∣∣
≤ C
√
n sup
x∈X
|p̂(x)− p0(x)|2 → 0

where the last line holds because p is bounded away from 0 and 1, p0(x) is uniformly bounded
away from 1, and p̂(x) converges uniformly to p0(x). Then, the result holds because under
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Assumptions 5.1 to 5.4, supx∈X |p̂(x) − p0(x)| = op(n
−1/4) (Hirano, Imbens, and Ridder

2003).

Lemma B.12. Under the Conditional Distributional Difference in Differences Assumption,
the Copula Stability Assumption, Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4

sup
δ∈∆Y

∣∣∣∣∣√n
(

(F̂∆Y0t|Dt=1(δ; p̂)− F∆Y0t|Dt=1(δ; p0))− 1

n

n∑
i=1

ϕ(Wi, δ)− F∆Y0t|Dt=1(δ; p0)

)∣∣∣∣∣ = op(1)

Proof. For any δ ∈ ∆Y ,

√
n(F̂∆Y0t|Dt=1(δ; p̂)− F∆Y0t|Dt=1(δ; p0))

=
√
n
(
F̂∆Y0t|Dt=1(δ; p̂)− F̂∆Y0t|Dt=1(δ; p0)

)
+
√
n(F̂∆Y0t|Dt=1(δ; p0)− F∆Y0t|Dt=1(δ; p0))

=
√
n
(
F∆Y0t|Dt=1(δ; p̂)− F∆Y0t|Dt=1(δ; p0)

)
+
√
n(F̂∆Y0t|Dt=1(δ; p0)− F∆Y0t|Dt=1(δ; p0)) + op(1)

=
√
nΓ(δ, p0)(p̂− p0) +

√
n(F̂∆Y0t|Dt=1(δ; p0)− F∆Y0t|Dt=1(δ; p0)) + op(1)

=
1√
n

n∑
i=1

E[1{∆Yt ≤ δ}|X = Xi, Dt = 0]

p(1− p0(Xi))
(Di − p0(Xi))

+
√
n(F̂∆Y0t|Dt=1(δ; p0)− F∆Y0t|Dt=1(δ; p0)) + op(1)

=
1√
n

n∑
i=1

ϕ(Wi, δ)− F∆Y0t|Dt=1(δ; p0) + op(1)

where the second equality holds from Vaart and Wellner (2007) under Assumptions 5.1 to 5.4
and under Lemmas B.9 to B.11. The third equality holds under Lemmas B.10 and B.11.
The last two equalities holds under Assumptions 5.1 to 5.4 and using the results on the
series logit estimator in Hirano, Imbens, and Ridder (2003) and the result follows from the
compactness of ∆Y .

Proof of Proposition 3 For the counterfactual distribution of untreated potential out-
comes for the treated group,

√
n(F̂Y0t|Dt=1(y)− FY0t|Dt=1(y)) =

√
n(φn(F0)− φ0(F0)) + φ′F0

√
n(F̂ − F0) + op(1)

which follows from an argument similar to Lemma B.6 for the first term (where we now
also use the result in Lemma B.18); Lemma B.7 continues to hold and also because of the
Donsker result in Lemma B.9.

Proof of Theorem 5 The result follows under the conditions stated in the theorem,
by the Hadamard differentiability of the quantile map (Van Der Vaart and Wellner 1996,
Lemma 3.9.23(ii)) and by Proposition 3.

Lemma B.13. Under the Conditional Distributional Difference in Differences Assumption,
the Copula Stability Assumption, Assumptions 3.2, 3.3, 4.1 and 5.1 to 5.4. For any δ ∈
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∆Y0t|Dt=1,

√
n
(

F̂
∗
∆Y0t|Dt=1(δ; p̂∗)− F̂∆Y0t|Dt=1(δ; p̂)

)
=
√
n
(

F̂
∗
∆Y0t|Dt=1(δ; p0)− F̂∆Y0t|Dt=1(δ; p0) + Γ(δ, p̂)(p̂∗ − p̂)

)
+ op(1)

Proof.

√
n
(

F̂
∗
∆Y0t|Dt=1(δ; p̂∗)− F̂∆Y0t|Dt=1(δ; p̂)

)
=
√
n
{(

F̂
∗
∆Y0t|Dt=1(δ; p̂∗)− F̂∆Y0t|Dt=1(δ; p̂∗)

)
−
√
n
(

F̂∆Y0t|Dt=1(δ; p0)− F̂∆Y0t|Dt=1(δ; p0)
)}

+
√
n
(

F̂
∗
∆Y0t|Dt=1(δ; p0)− F̂∆Y0t|Dt=1(δ; p0) + Γ(δ, p̂)(p̂∗ − p̂)

)
+
√
n
{(

F̂∆Y0t|Dt=1(δ; p̂∗)− F∆Y0t|Dt=1(δ; p̂∗)
)

−
√
n
(

F̂∆Y0t|Dt=1(δ; p̂)− F∆Y0t|Dt=1(δ; p̂)
)}

+
√
n
(
F∆Y0t|Dt=1(δ; p̂∗)− F∆Y0t|Dt=1(δ; p̂)− Γ(δ, p̂)(p̂∗ − p̂)

)
The first, third, and fourth terms in the first equality converge uniformly to 0. These hold
by Lemma B.9, by arguments similar to those in Lemma B.11 and because supx∈X |p̂∗(x)−
p̂(x)| = op(n

−1/4) which holds under our conditions on the propensity score. This implies
the result.

Lemma B.14. Let Ĝ∗X(x) =
√
n
(

F̂
∗
X(x)− F̂X(x)

)
and let

G̃p
Y0t|Dt=1(δ) =

√
n
(

F̂
p∗
∆Y0t|Dt=1(δ)− F̂

p

∆Y0t|Dt=1(δ)
)

. Under the Conditional Distributional

Difference in Differences Assumption, the Copula Stability Assumption, Assumptions 3.2,
3.3, 4.1 and 5.1 to 5.4.

(Ĝp
∆Y0t|Dt=1, Ĝ∆Yt−1|Dt=1, G̃

p
Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) ∗ (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4)

where (Wp
1,W

p
2,V

p
0,V

p
1,W

p
3,W

p
4) is the tight Gaussian process given in Proposition 3.

Proof. The result follows from Lemma B.13 and by Van Der Vaart and Wellner (1996,
Theorem 3.6.1).

Proof of Theorem 6 The result holds by Lemma B.14, by the Hadamard Differentiability
of our estimator of the QTT, and by the Delta method for the bootstrap (Van Der Vaart
and Wellner 1996, Theorem 3.9.11).
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B.5 Additional Auxiliary Results

Lemma B.15. Assume Y is continuously distributed. Then,

√
n

(
1

n

n∑
i=1

1{F̂Y (Xi) ≤ q} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (q)}

)
p−→ 0

Proof. Because Y is continuously distributed,

1

n

n∑
i=1

(
1{F̂Y (Xi) ≤ q} − 1{Xi ≤ F̂−1

Y (q)}
)

=

{
0 if q ∈ Range(F̂Y )

− 1
n

otherwise

which implies the result.

Lemma B.16. Assume Y and Z are continuously distributed. Then,

√
n

(
1

n

n∑
i=1

1{F̂−1
Z (F̂Y (Xi)) ≤ z} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (F̂Z(z))}

)
p−→ 0

Proof. F̂−1
Z (F̂Y (Xi)) ≤ z ⇔ F̂Y (Xi) ≤ F̂Z(z) which holds by Van der Vaart (2000, Lemma

21.1(i)). Then, an application of Lemma B.15 implies the result.

Lemma B.17.

√
n

{
1

n

n∑
i=1

FY (Zi)− E[FY (Z)]−

(
1

n

n∑
i=1

F̂Y (Zi)− E[F̂Y (Z)]

)}
= op(1) (19)

Proof. The result follows since Equation (19) is equal to

√
n

∫
Z

∫
Y
1{y ≤ z} d(F̂Y − FY )(y) d(F̂Z − FZ)(z)

which converges to 0.

Lemma B.18.

√
n

(
1

n

∑
i=1

1{F̂∆Y0t|Dt=1(Xi) ≤ q} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
∆Y0t|Dt=1(q)}

)
p−→ 0

Proof. This follows because∣∣∣∣∣ 1n
n∑
i=1

(
1{F̂∆Y0t|Dt=1(Xi) ≤ q} − 1{Xi ≤ F̂−1

∆Y0t|Dt=1(q)}
)∣∣∣∣∣ ≤ C

n

where C is an arbitrary constant and the result holds because the difference is equal to 0 if

q ∈ Range(F̂∆Y0t|Dt=1) and is less than or equal to 1
np
×max

{
p̂(Xi)

1−p̂(Xi)

}
which is less than or
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equal to C
n

because p̂(·) is bounded away from 0 and 1 with probability 1 and p is greater
than 0. This implies the first part. The main result holds by exactly the same reasoning as
Lemma B.16.
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C Tables

Table 1: Summary Statistics

Treated Counties Untreated Counties Diff P-val on Diff

Unem. Rate 2007 6.10 5.07 1.028 0.00
Unem. Rate 2006 6.25 5.34 0.904 0.00
Unem. Rate 2005 7.09 6.10 0.984 0.00
South 0.37 0.64 -0.274 0.00
North-Central 0.42 0.28 0.135 0.00
West 0.21 0.07 0.14 0.00
Log Med. Inc. 10.35 10.32 0.033 0.00
Log Pop. 10.34 9.91 0.437 0.00

Notes: Summary statistics for counties by whether or not their minimum wage increased in Q1
of 2007 (treated) or not (untreated). Unemployment rates are calculated using February
unemployment and labor force estimates from the Local Area Unemployment Database. Median
income is the county’s median income from 1997 and comes from the 2000 County Data Book.
Population is the county’s population in 2000 and comes from the 2000 County Data Book.
Sources: Local Area Unemployment Statistics Database from the BLS and 2000 County Data
Book
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D Figures

Figure 1: QTT estimates of the effect of increasing the minimum wage on county-
level unemployment rates
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Notes: The top panel provides estimates of the QTT using the no-covariates version of the
method proposed in the current paper. The lower panel provides QTT estimates when the
DDID assumption holds only after conditioning on covariates. Standard errors are computed
using the bootstrap with 100 iterations.
Sources: Local Area Unemployment Statistics Database from the BLS and 2000 County
Data Book
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Figure 2: Kendall’s Tau estimates for treated counties by year
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Notes: The figure estimates Kendall’s Tau for states that increased their minimum wages in
the first quarter of 2007. Standard errors are computed using the block bootstrap with 100
iterations.
Sources: Local Area Unemployment Statistics Database from the BLS
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Figure 3: Bounds for QTT with Unknown Copula
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Notes: The figure shows bounds on QTTs when the copula between the change in untreated
potential outcomes and the initial level of untreated potential outcomes for the treated
group is treated as being completely unknown. The results are obtained using the authors’
implementation of the method in Fan and Yu (2012). The figure displays point estimates of
the bounds and does not include standard errors or any uncertainty due to sampling.
Sources: Local Area Unemployment Statistics Database from the BLS

52



E Supplementary Figures

E.1 Change in Changes and Quantile Difference in Differences
Estimates for 2007
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E.2 Pre-Treatment QTT Estimates
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